next up previous contents
Next: About this document ... Up: An Analysis of Diversity Previous: 4 Extended Metaphors of   Contents

Bibliography

Adamidis and Petridis, 1996
Adamidis, P. and Petridis, V. (1996).
Co-operating populations with different evolution behavior.
In Proceedings of 1996 IEEE International Conference on Evolutionary Computation, pages 188-191, Nagoya, Japan.

Altenberg, 1994
Altenberg, L. (1994).
Emergent phenomena in genetic programming.
In Sebald, A. and Fogel, L., editors, Proceedings of the Third Annual Conference on Evolutionary Programming, pages 233-241. World Scientific.

Andre and Koza, 1996
Andre, D. and Koza, J. (1996).
Parallel genetic programming: A scalable implementation using the transputer network architecture.
In Angeline, P. and Kinnear, Jr., K., editors, Advances in Genetic Programing 2, chapter 16. The MIT Press, Cambridge, MA, USA.

Angeline, 1997
Angeline, P. (1997).
Subtree crossover: Building block engine or macromutation?
In Koza, J. et al., editors, Proceedings of the Second Annual Genetic Programming Conference, pages 9-17, Stanford University, USA. Morgan Kaufmann.

Angeline, 1998
Angeline, P. J. (1998).
A historical perspective on the evolution of executable structures.
Informaticae, 36(1-4):179-195.

Bäck et al., 2000a
Bäck, T., Fogel, D., and Michalewicz, Z., editors (2000a).
Evolutionary Computation 1: Basic Algorithms and Operators.
Institute of Physics Publishing, Bristol, UK.

Bäck et al., 2000b
Bäck, T., Fogel, D. B., and Michalewicz, Z., editors (2000b).
Evolutionary Computation 2: Advanced Algorithms and Operators.
Institute of Physics Publishing, Bristol, UK.

Banzhaf and Langdon, 2002
Banzhaf, W. and Langdon, W. B. (2002).
Some considerations on the reason for bloat.
Genetic Programming and Evolvable Machines, 3(1):81-91.

Banzhaf et al., 1998
Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998).
Genetic Programming: An Introduction.
Morgan Kaufmann, Inc., San Francisco, USA.

Barr et al., 1989
Barr, A., Cohen, P., and Feigenbaum, E., editors (1989).
The Handbook of Artificial Intelligence, volume 4.
Addison-Wesley, Reading, MA.

Belding, 1995
Belding, T. (1995).
The distributed genetic algorithm revisited.
In Eshelman, L., editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 114-121, San Francisco, CA. Morgan Kaufmann.

Bersano-Begey, 1997
Bersano-Begey, T. (1997).
Controlling exploration, diversity and escaping local optima in GP.
In Koza, J., editor, Late Breaking Papers at the Genetic Programming Conference, pages 7-10, Stanford University, CA.

Bessaou et al., 2000
Bessaou, M., Pétrowski, A., and Siarry, P. (2000).
Island model cooperating with speciation for multimodal optimization.
In Schoenauer, M. et al., editors, Parallel Problem Solving from Nature, pages 437-446, Paris, France. Springer Verlag.

Blickle and Thiele, 1995
Blickle, T. and Thiele, L. (1995).
A comparison of selection schemes used in genetic algorithms.
TIK-Report 11, TIK Institut fur Technische Informatik und Kommunikationsnetze, Computer Engineering and Networks Laboratory, ETH, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzerland.

Bongard, 1999
Bongard, J. C. (1999).
Coevolutionary dynamics of a multi-population genetic programming system.
In Floreano, D., Nicoud, J.-D., and Mondada, F., editors, Proceedings of the 5th European Conference on Advances in Artificial Life, volume 1674 of LNAI, pages 154-158, Berlin. Springer.

Brameier and Banzhaf, 2002
Brameier, M. and Banzhaf, W. (2002).
Explicit control of diversity and effective variation distance in linear genetic programming.
In Tettamanzi, A. et al., editors, Genetic Programming, Proceedings of the 5th European Conference, volume 2278 of LNCS, pages 162-171, Kinsale, Ireland. Springer-Verlag.

Bremermann, 1962
Bremermann, H. (1962).
Optimization through evolution and recombination.
In Yovits, M., Jacobi, G. T., and Goldstine, G., editors, Self-Organizing Systems, pages 93-106. Spartan Books, Washington DC.

Burke et al., 1998
Burke, D., Jong, K. D., Grefenstette, J., Ramsey, C., and Wu, A. (1998).
Putting more genetics into genetic algorithms.
Evolutionary Computation, 6(4):387-410.

Burke et al., 2002a
Burke, E., Gustafson, S., and Kendall, G. (2002a).
A survey and analysis of diversity measures in genetic programming.
In Langdon, W. B. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 716-723, New York. Morgan Kaufmann Publishers.

Burke et al., 2004
Burke, E., Gustafson, S., and Kendall, G. (2004).
Diversity in genetic programming: An analysis of measures and correlation with fitness.
IEEE Transactions on Evolutionary Computation, 8(1):47-62.

Burke et al., 2002b
Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2002b).
Advanced population diversity measures in genetic programming.
In Guervós, J. M. et al., editors, Parallel Problem Solving from Nature, volume 2439 of LNCS, pages 341-350, Granada, Spain. Springer.

Burke et al., 2003
Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2003).
Is increasing diversity in genetic programming beneficial? An analysis of the effects on fitness.
In McKay, B. et al., editors, Congress on Evolutionary Computation, pages 1398-1405, Canberra, Australia. IEEE Press.

Cantú-Paz, 1999
Cantú-Paz, E. (1999).
Topologies, migration rates, and multi-population parallel genetic algorithms.
In Banzhaf, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 91-98, San Francisco, CA. Morgan Kaufmann.

Cohoon et al., 1987
Cohoon, J., Hegde, S., Martin, W., and Richards, D. (1987).
Punctuated equilibria: a parallel genetic algorithm.
In Grefenstette, J., editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 148-154, Hillsdale, NJ, USA. Lawrence Erlbaum Associates.

Collins, 1992
Collins, R. (1992).
Studies in Artificial Evolution.
Ph.D. dissertation, Department of Computer Science, University of California at Los Angeles.

Cramer, 1985
Cramer, N. (1985).
A representation for the adaptive generation of simple sequential programs.
In Grefenstette, J., editor, Proceedings of an International Conference on Genetic Algorithms and the Applications, pages 183-187, Carnegie-Mellon University, Pittsburgh, PA, USA.

Daida, 2002
Daida, J. (2002).
Limits to expression in genetic programming: Lattice-aggregate modeling.
In Fogel, D. et al., editors, Congress on Evolutionary Computation, pages 273-278, Honolulu, USA. IEEE Press.

Daida et al., 2001
Daida, J., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., Chaudhri, O., and Polito II, J. (2001).
What makes a problem GP-hard? analysis of a tunably difficult problem in genetic programming.
Genetic Programming and Evolvable Machines, 2(2):165-191.

Daida et al., 2003a
Daida, J., Hilss, A., Ward, D., and Long, S. (2003a).
Visualizing tree structures in genetic programming.
In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2724 of LNCS, pages 1652-1664, Chicago, IL, USA. Springer-Verlag.

Daida et al., 2003b
Daida, J., Li, H., Tang, R., and Hilss, A. (2003b).
What makes a problem GP-hard? validating a hypothesis of structural causes.
In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and Evolutionary Computation, volume 2724 of LNCS, pages 1665-1677, Chicago, IL, USA. Springer-Verlag.

Darwen and Yao, 2000
Darwen, P. and Yao, X. (2000).
Does extra genetic diversity maintain escalation in a co-evolutionary arms race.
International Journal of Knowledge-Based Intelligent Engineering Systems, 4(3):191-200.

Darwen and Yao, 2001
Darwen, P. and Yao, X. (2001).
Why more choices cause less cooperation in iterated prisoner's dilemma.
In Proceedings of the Congress on Evolutionary Computation, pages 987-994, Seoul, Korea. IEEE Press.

Darwin, 1859
Darwin, C. (1859).
The Origin of Species by Means of Natural Selection.
Mentor Reprint, 1958, NY.

Davis, 1991
Davis, L., editor (1991).
Handbook of Genetic Algorithms.
International Thomson Press, Boston, MA.

de Jong et al., 2001
de Jong, E., Watson, R., and Pollack, J. (2001).
Reducing bloat and promoting diversity using multi-objective methods.
In Spector, L. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 11-18, San Francisco, CA. Morgan Kaufmann.

Deb and Goldberg, 1989
Deb, K. and Goldberg, D. (1989).
An investigation of niche and species formation in genetic function optimization.
In Schaffer, J., editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 42-50, San Mateo, CA, USA. Morgan Kaufmann.

DeJong, 1975
DeJong, K. (1975).
An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Ph.D. thesis, Department of Compter and Communication Sciences, University of Michigan.

D'haeseleer, 1994
D'haeseleer, P. (1994).
Context preserving crossover in genetic programming.
In Proceedings of the 1994 IEEE World Congress on Computational Intelligence, volume 1, pages 256-261, Orlando, FL, USA. IEEE Press.

D'haeseleer and Bluming, 1994
D'haeseleer, P. and Bluming, J. (1994).
Effects of locality in individual and population evolution.
In Kinnear, Jr., K., editor, Advances in Genetic Programming, chapter 8, pages 177-198. MIT Press.

Edmonds, 2001
Edmonds, B. (2001).
Learning appropriate contexts.
In Akman, V. et al., editors, Modelling and Using Context, volume 2116 of LNAI, pages 143-155. Springer-Verlag.

Eggermont and van Hemert, 2001
Eggermont, J. and van Hemert, J. (2001).
Adaptive genetic programming applied to new and existing simple regression problems.
In Miller, J. et al., editors, Genetic Programming, Proceedings of the 4th European Conference, volume 2038 of LNCS, pages 23-35, Lake Como, Italy. Springer-Verlag.

Eiben and Schippers, 1998
Eiben, A. E. and Schippers, C. A. (1998).
On evolutionary exploration and exploitation.
Fundamenta Informaticae, 35(1-4):35-50.

Eiben and van Hemert, 1999
Eiben, G. and van Hemert, J. (1999).
SAW-ing EAs: Adapting the fitness function for solving constrained problems.
In Corne, D. et al., editors, New Ideas in Optimization, pages 389-402. McGraw-Hill, London.

Ekárt, 2000
Ekárt, A. (2000).
Shorter fitness preserving genetic programs.
In Fonlupt, C. et al., editors, Artificial Evolution. 4th European Conference, Selected Papers, volume 1829 of LNCS, pages 73-83, Dunkerque, France.

Ekárt and Németh, 2000
Ekárt, A. and Németh, S. (2000).
A metric for genetic programs and fitness sharing.
In Poli, R. et al., editors, Genetic Programming, Proceedings of the 3rd European Conference, volume 1802 of LNCS, pages 259-270, Edinburgh. Springer-Verlag.

Ekárt and Németh, 2001
Ekárt, A. and Németh, S. (2001).
Selection based on the pareto nondomination criterion for controlling code growth in genetic programming.
Genetic Programming and Evolvable Machines, 2(1):61-73.

Ekárt and Németh, 2002
Ekárt, A. and Németh, S. (2002).
Maintaining the diversity of genetic programs.
In Foster, J. et al., editors, Genetic Programming, Proceedings of the 5th European Conference, volume 2278 of LNCS, pages 162-171, Kinsale, Ireland. Springer-Verlag.

Eldredge and Gould, 1972
Eldredge, N. and Gould, S. (1972).
Punctuated Equilibria: An Alternative to Phyletic Gradualism, chapter 5, pages 82-115.
Freeman, Cooper and Co.

Eshelman and Schaffer, 1993
Eshelman, L. and Schaffer, J. (1993).
Crossover's niche.
In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 9-14, San Mateo, CA. Morgan Kaufman.

Fernandes and Rosa, 2001
Fernandes, C. and Rosa, A. (2001).
A study on non-random mating and varying population size in genetic algorithms using a royal road function.
In Proceedings of the Congress on Evolutionary Computation, pages 60-66. IEEE Press.

Fernandez et al., 2000
Fernandez, F., Tomassini, M., Punch, W., and Sanchez, J. M. (2000).
Experimental study of isolated multipopulation genetic programming.
In Whitley, D. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, page 536, Las Vegas, NV, USA. Morgan Kaufmann.

Fernandez et al., 2001
Fernandez, F., Tomassini, M., and Vanneschi, L. (2001).
Studying the influence of communication topology and migration on distributed genetic programming.
In Miller, J. et al., editors, Genetic Programming, Proceedings of the 4th European Conference, volume 2038 of LNCS, pages 51-63, Lake Como, Italy. Springer-Verlag.

Fernandez et al., 2003
Fernandez, F., Tomassini, M., and Vanneschi, L. (2003).
An empirical study of multipopulation genetic programming.
Genetic Programming and Evolvable Machines, 4(1):21-51.

Fogel, 1998
Fogel, D. (1998).
Evolutionary Computation: The Fossil Record.
IEEE Press, Piscataway, NJ.

Fogel et al., 1966
Fogel, L., Owens, A., and Walsh, M. (1966).
Aritifial Intelligence Through Simulated Evolution.
John Wiley & Sons, Inc., New York.

Fraser, 1957
Fraser, A. (1957).
Simulation of genetic systems by automatic digital computers.
Aust. J. of Biol. Sci., 10:484-491.

Friedberg, 1958
Friedberg, R. (1958).
A learning machine: Part i.
IBM Journal of Research and Development, (2):2-13.

Friedberg et al., 1959
Friedberg, R., Dunham, B., and North, J. (1959).
A learning machine: Part ii.
IBM Journal of Research and Development, (3):282-287.

Gathercole and Ross, 1996
Gathercole, C. and Ross, P. (1996).
An adverse interaction between crossover and restricted tree depth in genetic programming.
In Koza, J. et al., editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 291-296, Stanford University, CA, USA. MIT Press.

Geard and Wiles, 2002
Geard, N. and Wiles, J. (2002).
Diversity maintenance on neutral landscapes: An argument for recombination.
In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation, pages 211-213, Honolulu, USA. IEEE Press.

Glover, 1986
Glover, F. (1986).
Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533-549.

Glover and Kochenberger, 2003
Glover, F. and Kochenberger, G., editors (2003).
Handbook of Metaheuristics.
Kluwer, Boston, MA.

Glover and Laguna, 1997
Glover, F. and Laguna, M. (1997).
Tabu search.
Kluwer Academic Publishers, Boston, USA.

Goldberg, 2002
Goldberg, D. (2002).
The Design of Innovation, Lessons from and for Competent Genetic Algorithms.
Kluwer Academic Publishers, Boston, MA.

Goldberg and O'Reilly, 1998
Goldberg, D. and O'Reilly, U.-M. (1998).
Where does the good stuff go, and why? how contextual semantics influence program structure in simple genetic programming.
In Banzhaf, W. et al., editors, Genetic Programming, Proceedings of the First European Workshop, volume 1391 of LNCS, pages 16-36, Paris. Springer-Verlag.

Goldberg and Richardson, 1987
Goldberg, D. and Richardson, J. (1987).
Genetic algorithms with sharing for multimodalfunction optimization.
In Grefenstette, J., editor, Proceedings of the 2nd International Conference on Genetic Algorithms and their Applications, pages 41-49, Cambridge, MA. Lawrence Erlbaum Associates.

Gustafson et al., 2004a
Gustafson, S., Burke, E., and Kendall, G. (2004a).
Sampling of unique structures and behaviours in genetic programming.
In Keijzer, M. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, Coimbra, Portugal. Springer-Verlag.

Gustafson et al., 2004b
Gustafson, S., Ekárt, A., Burke, E., and Kendall, G. (expected to appear 2004b).
Problem difficulty and code growth in genetic programming.
Genetic Programming and Evolvable Hardware.

Gustafson and Krasnogor, 2003
Gustafson, S. and Krasnogor, N. (2003).
Visualising populations of rooted labeled trees on a lattice.
Unpublished. http://www.cs.nott.ac.uk/~smg/.

Holland, 1975
Holland, J. (1975).
Adaptation in Natural and Artificial Systems.
The University of Michigan Press.

Holland, 2000
Holland, J. (2000).
Building blocks, cohort genetic algorithms, and hyperplane-defined functions.
Evolutionary Computation, 8(4):373-391.

Hu and Goodman, 2002
Hu, J. and Goodman, E. (2002).
The hierarchical fair competition (HFC) model for parallel evolutionary algorithms.
In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation, pages 49-54, Honolulu, USA. IEEE Press.

Hu et al., 2002
Hu, J., Seo, K., Li, S., Fan, Z., Rosenberg, R., and Goodman, E. (2002).
Structure fitness sharing (SFS) for evolutionary design by genetic programming.
In Langdon, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 780-787, New York. Morgan Kaufmann Publishers.

Hutter, 2002
Hutter, M. (2002).
Fitness uniform selection to preserve genetic diversity.
In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation, pages 783-788, Honolulu, USA. IEEE Press.

Iba, 1996
Iba, H. (1996).
Random tree generation for genetic programming.
In Voigt, H.-M. et al., editors, Parallel Problem Solving from Nature, volume 1141 of LNCS, pages 144-153, Berlin, Germany. Springer Verlag.

Iba et al., 1994
Iba, H., de Garis, H., and Sato, T. (1994).
Genetic programming using a minimum description length principle.
In Kinnear, Jr., K. E., editor, Advances in Genetic Programming, chapter 12, pages 265-284. MIT Press.

Igel and Chellapilla, 1999
Igel, C. and Chellapilla, K. (1999).
Investigating the influence of depth and degree of genotypic change on fitness in genetic programming.
In Banzhaf, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 1061-1068, Orlando, FL, USA. Morgan Kaufmann.

Iwashita and Iba, 2002
Iwashita, M. and Iba, H. (2002).
Island model GP with immigrants aging and depth-dependent crossover.
In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation, pages 267-272, Honolulu, USA. IEEE Press.

Jefferson et al., 1991
Jefferson, D., Collins, R., Cooper, C., Dyer, M., Korf, M. F. R., Taylor, C., and Wang, A. (1991).
Evolution as a theme in artificial life: The genesys/tracker system.
In Langton, C. et al., editors, Proceedings of Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, volume X. Addison-Wesley.

Juels and Wattenberg, 1995
Juels, A. and Wattenberg, M. (1995).
Stochastic hillclimbing as a baseline method for evaluating genetic algorithms.
Technical Report Technical Report CSD-94-834. Computers Science Department, University of California at Berkeley, USA.

Juillé and Pollack, 1996
Juillé, H. and Pollack, J. (1996).
Massively parallel genetic programming.
In Angeline, P. and Kinnear, Jr., K., editors, Advances in Genetic Programming 2, pages 339-358. The MIT Press, Cambridge, MA, USA.

Kauffman, 1993
Kauffman, S. (1993).
The origins of order: self-orginiation and selection in evolution.
Oxford University Press, New York, NY.

Keijzer, 1996
Keijzer, M. (1996).
Efficiently representing populations in genetic programming.
In Angeline, P. and Kinnear, Jr., K., editors, Advances in Genetic Programming 2, chapter 13, pages 259-278. MIT Press, Cambridge, MA, USA.

Keijzer, 2002
Keijzer, M. (2002).
Scientific Discovery using Genetic Programming.
PhD thesis, Danish Technical University, Lyngby, Denmark.

Keijzer, 2003
Keijzer, M. (2003).
Improving symbolic regression with interval arithmetic and linear scaling.
In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume 2610 of LNCS, pages 71-83, Essex, UK. Springer-Verlag.

Keller and Banzhaf, 1995
Keller, R. and Banzhaf, W. (1995).
Explicit maintenance of genetic diversity on genospaces.
Internal Report, University of Dortmund.

Keller and Banzhaf, 1996
Keller, R. and Banzhaf, W. (1996).
Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes.
In Koza, J. et al., editors, Proceedings of First Annual Conference on Genetic Programming, pages 116-122, Stanford University, CA, USA. MIT Press.

Kirkpatrick et al., 1983
Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983).
Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671-680.

Kishore et al., 2001
Kishore, J., Patnaik, L., Mani, V., and Agrawal, V. (2001).
Genetic programming based pattern classification with feature space partitioning.
Information Sciences, 131(1-4):65-86.

Koza, 1992
Koza, J. (1992).
Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA.

Koza, 1994
Koza, J. (1994).
Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge MA, USA.

Koza et al., 1999
Koza, J., Andre, D., Bennett III, F., and Keane, M. (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving.
Morgan Kaufman.

Koza et al., 2003
Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., and Lanza, G. (2003).
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers.

Krasnogor, 2002
Krasnogor, N. (2002).
Studies on the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England, Bristol, UK.

Langdon, 1998a
Langdon, W. (1998a).
Data Structures and Genetic Programming: Genetic Programming + Data Structures = Automatic Programming!, volume 1 of Genetic Programming.
Kluwer, Boston.

Langdon, 1998b
Langdon, W. (1998b).
The evolution of size in variable length representations.
In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 633-638, Anchorage, AL, USA. IEEE Press.

Langdon, 1999
Langdon, W. (1999).
Scaling of program fitness spaces.
Evolutionary Computation, 7(4):399-428.

Langdon, 2000a
Langdon, W. (2000a).
Quadratic bloat in genetic programming.
In Whitley, D. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 451-458, Las Vegas, NV, USA. Morgan Kaufmann.

Langdon, 2000b
Langdon, W. (2000b).
Size fair and homologous tree genetic programming crossovers.
Genetic Programming and Evolvable Machines, 1(1/2):95-119.

Langdon and Poli, 1998a
Langdon, W. and Poli, R. (1998a).
Fitness causes bloat: Mutation.
In Banzhaf, W. et al., editors, Genetic Programming, Proceedings of the 1st European Workshop, volume 1391 of LNCS, pages 37-48, Paris. Springer-Verlag.

Langdon and Poli, 1998b
Langdon, W. and Poli, R. (1998b).
Why ants are hard.
In Koza, J. et al., editors, Proceedings of the Third Annual Conference on Genetic Programming, pages 193-201, Madison, WI, USA. Morgan Kaufmann.

Langdon and Poli, 2002
Langdon, W. and Poli, R. (2002).
Foundations of Genetic Programming.
Springer-Verlag, Berlin.

Langdon et al., 1999
Langdon, W., Soule, T., Poli, R., and Foster, J. (1999).
The evolution of size and shape.
In Spector, L. et al., editors, Advances in Genetic Programming 3, chapter 8, pages 163-190. MIT Press, Cambridge, MA, USA.

Li et al., 2002
Li, J.-P., Balazs, M., Parks, G., and Clarkson, P. (2002).
A species conserving genetic algorithm for multimodal function optimization.
Evolutionary Computation, 10(3):207-234.

Lin et al., 1994
Lin, S.-C., Punch, W., and Goodman, E. (1994).
Coarse-grain genetic algorithms, categorization and new approaches.
In Sixth IEEE Symposium on Parallel and Distributed Processing, pages 28-37, Dallas, TX, USA. IEEE Computer Society Press.

Liu et al., 2000
Liu, Y., Yao, X., and Higuchi, T. (2000).
Evolutionary ensembles with negative correlation learning.
IEEE Transactions on Evolutionary Computation, 4(4):380-387.

Loveard, 2003
Loveard, T. (2003).
Genetic programming with meta-search: Searching for a successful population within the classification domain.
In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume 2610 of LNCS, pages 121-131, Essex, UK. Springer-Verlag.

Lucas et al., 1993
Lucas, J., van Baronaigien, D., and Ruskey, F. (1993).
On rotations and the generation of binary trees.
J. Algorithms, 15(3):343-366.

Luke, 1998
Luke, S. (1998).
Genetic programming produced competitive soccer softbot teams for robocup97.
In Koza, J. et al., editors, Proceedings of the Third Annual Conference on Genetic Programming, pages 214-222, Madison, WI, USA. Morgan Kaufmann.

Luke, 2000
Luke, S. (2000).
Two fast tree-creation algorithms for genetic programming.
IEEE Transactions on Evolutionary Computation, 4(3):274-283.

Luke, 2001
Luke, S. (2001).
When short runs beat long runs.
In Spector, L. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 74-80, San Francisco, CA, USA. Morgan Kaufmann.

Luke, 2003
Luke, S. (2003).
Modification point depth and genome growth in genetic programming.
Evolutionary Computation, 11(1):67-106.

Luke, 2004
Luke, S. (2004).
ECJ: A java-based evolutionary computation and genetic programming system.
http://www.cs.umd.edu/projects/plus/ec/ecj/.

Luke and Panait, 2001
Luke, S. and Panait, L. (2001).
A survey and comparison of tree generation algorithms.
In Spector, L. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 81-88, San Francisco, USA. Morgan Kaufmann.

Luke and Panait, 2002a
Luke, S. and Panait, L. (2002a).
Fighting bloat with nonparametric parsimony pressure.
In Guervós, J. M. et al., editors, Parallel Problem Solving from Nature, number 2439 in Lecture Notes in Computer Science, LNCS, pages 411-420, Granada, Spain. Springer-Verlag.

Luke and Panait, 2002b
Luke, S. and Panait, L. (2002b).
Lexicographic parsimony pressure.
In Langdon, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 829-836, New York. Morgan Kaufmann Publishers.

Luke and Spector, 1998
Luke, S. and Spector, L. (1998).
A revised comparison of crossover and mutation in genetic programming.
In Koza, J. et al., editors, Proceedings of the Third Annual Genetic Programming Conference, pages 208-213, San Francisco, CA. Morgan Kaufmann.

Martin et al., 2000
Martin, W. N., Lienig, J., and Cohoon, J. P. (2000).
Island (migration) models: evolutionary algorithms based on punctuated equilibria.
In Bäck, T. et al., editors, Evolutionary Computation 2, chapter 15. Institute of Physics Publishing, Bristol, UK.

Matsumoto and Nishimura, 1998
Matsumoto, M. and Nishimura, T. (1998).
Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.
ACM Transactions on Modeling and Computer Simulation, 8(1):3-30.

McKay, 2000
McKay, R. (2000).
Fitness sharing in genetic programming.
In Whitley, D. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 435-442, Las Vegas, NV, USA. Morgan Kaufmann.

McKay and Abbass, 2001a
McKay, R. and Abbass, H. (2001a).
Anti-correlation: A diversity promoting mechanisms in ensemble learning.
The Australian Journal of Intelligent Information Processing Systems, (3/4):139-149.

McKay and Abbass, 2001b
McKay, R. and Abbass, H. (2001b).
Anticorrelation measures in genetic programming.
In Kasabov, N. and Whigham, P., editors, Australasia-Japan Workshop on Intelligent and Evolutionary Systems, pages 45-51, Dunedin, New Zealand.

McPhee and Hopper, 1999
McPhee, N. and Hopper, N. (1999).
Analysis of genetic diversity through population history.
In Banzhaf, W. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 1112-1120, FL, USA. Morgan Kaufmann.

Monsieurs and Flerackers, 2003
Monsieurs, P. and Flerackers, E. (2003).
Reducing population size while maintaining diversity.
In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume 2610 of LNCS, pages 145-156, Essex, UK. Springer-Verlag.

Montana, 1995
Montana, D. (1995).
Strongly typed genetic programming.
Evolutionary Computation, 3(2):199-230.

Moscato, 1989
Moscato, P. (1989).
On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
Caltech concurrent computation program report 826, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Nienhuys-Cheng, 1997
Nienhuys-Cheng, S.-H. (1997).
Distance between Herbrand interpretations: a measure for approximations to a target concept.
In Lavrac, N. and Dzeroski, S., editors, Proceedings of the 7th International Workshop on Inductive Logic Programming, volume 1297 of LNAI, pages 213-226, Prague, Czech Republic. Springer-Verlag.

Nikolaev and Iba, 2001
Nikolaev, N. and Iba, H. (2001).
Accelerated genetic programming of polynomials.
Genetic Programming and Evolvable Machines, 2(3):231-257.

Nilsson, 1971
Nilsson, N. (1971).
Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, New York.

Nordin et al., 1999
Nordin, P., Banzhaf, W., and Francone, F. D. (1999).
Efficient evolution of machine code for CISC architectures using instruction blocks and homologous crossover.
In Spector, L. et al., editors, Advances in Genetic Programming 3, chapter 12, pages 275-299. MIT Press, Cambridge, MA, USA.

Olsson, 1995
Olsson, R. (1995).
Inductive functional programming using incremental program transformation.
Artificial Intelligence, 74(1):55-81.

O'Reilly, 1995
O'Reilly, U.-M. (1995).
An Analysis of Genetic Programming.
PhD thesis, Carelton University, Ottawa, Ontario, Canada.

O'Reilly, 1997
O'Reilly, U.-M. (1997).
Using a distance metric on genetic programs to understand genetic operators.
In IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, volume 5, pages 4092-4097, FL, USA.

O'Reilly, 1998
O'Reilly, U.-M. (1998).
The impact of external dependency in genetic programming primitives.
In Proceedings of the IEEE World Congress on Computational Intelligence, pages 306-311, Anchorage, AL, USA. IEEE Press.

O'Reilly and Goldberg, 1998
O'Reilly, U.-M. and Goldberg, D. (1998).
How fitness structure affects subsolution acquisition in genetic programming.
In Koza, J. et al., editors, Proceedings of the Third Annual Genetic Programming Conference, pages 269-277, Madison, WI, USA. Morgan Kaufmann.

O'Reilly and Oppacher, 1994
O'Reilly, U.-M. and Oppacher, F. (1994).
Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing.
In Davidor, Y. et al., editors, Parallel Problem Solving from Nature, number 866 in LNCS, pages 397-406, Jerusalem. Springer-Verlag.

O'Reilly and Oppacher, 1995
O'Reilly, U.-M. and Oppacher, F. (1995).
Hybridized crossover-based search techniques for program discovery.
In Proceedings of the World Conference on Evolutionary Computation, volume 2, pages 573-578, Perth, Australia. IEEE Press.

O'Reilly and Oppacher, 1996
O'Reilly, U.-M. and Oppacher, F. (1996).
A comparative analysis of GP.
In Angeline, P. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2, chapter 2, pages 23-44. MIT Press, Cambridge, MA, USA.

Page et al., 1999
Page, J., Poli, R., and Langdon, W. B. (1999).
Smooth uniform crossover with smooth point mutation in genetic programming: A preliminary study.
In Poli, R. et al., editors, Genetic Programming, Proceedings of the 3rd European Conference, volume 1598 of LNCS, pages 39-49, Goteborg, Sweden. Springer-Verlag.

Papadimitriou and Steiglitz, 1982
Papadimitriou, C. and Steiglitz, K. (1982).
Combinatorial optimization : algorithms and complexity.
Prentice Hall, Englewood Cliffs, NJ.

Pardalos and Resende, 2002
Pardalos, P. and Resende, M., editors (2002).
Handbook of Applied Optimization.
Oxford University Press, New York, NY.

Pei and Goodman, 2001
Pei, H. and Goodman, E. (2001).
A comparison of cohort genetic algorithms with canonical serial and island-model distributed ga's.
In Spector, L. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 501-510, San Francisco, CA, USA. Morgan Kaufmann.

Pettey et al., 1987
Pettey, C., Leuze, M., and Grefenstette, J. (1987).
A parallel genetic algorithm.
In Grefenstette, J., editor, Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, Hillsdale, NJ, USA. Lawrence Erlbaum Associates.

Pevzner, 2000
Pevzner, P. (2000).
Computational Molecular Biology An Algorithmic Approach.
MIT Press, Cambridge, MA, USA.

Platel et al., 2003
Platel, M., Clergue, M., and Collard, P. (2003).
Maximum homologous crossover for linear genetic programming.
In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume 2610 of LNCS, pages 200-210, Essex, UK. Springer-Verlag.

Poli, 2003
Poli, R. (2003).
A simple but theoretically-motivated method to control bloat in genetic programming.
In Ryan, C. et al., editors, Genetic Programming, Proceedings of the 6th European Conference, volume 2610 of LNCS, pages 200-210, Essex, UK. Springer-Verlag.

Poli and Langdon, 1998a
Poli, R. and Langdon, W. (1998a).
On the search properties of different crossover operators in genetic programming.
In Koza, J. et al., editors, Proceedings of the Third Annual Genetic Programming Conference, pages 293-301, Madison, WI, USA. Morgan Kaufmann.

Poli and Langdon, 1998b
Poli, R. and Langdon, W. (1998b).
Schema theory for genetic programming with one-point crossover and point mutation.
Evolutionary Computation, 6(3):231-252.

Poli and McPhee, 2001
Poli, R. and McPhee, N. (2001).
Exact schema theorems for GP with one-point and standard crossover operating on linear structures and their application to the study of the evolution of size.
In Miller, J. et al., editors, Genetic Programming, Proceedings of the 4th European Conference, volume 2038 of LNCS, pages 126-142, Lake Como, Italy. Springer Verlag.

Poli and McPhee, 2003a
Poli, R. and McPhee, N. (2003a).
General schema theory for genetic programming with subtree-swapping crossover: Part i.
Evolutionary Computation, 11(1):53-66.

Poli and McPhee, 2003b
Poli, R. and McPhee, N. (2003b).
General schema theory for genetic programming with subtree-swapping crossover: Part ii.
Evolutionary Computation, 11(2):169-206.

Poli and Page, 2000
Poli, R. and Page, J. (2000).
Solving high-order boolean parity problems with smooth uniform crossover, sub-machine-code gp and demes.
Genetic Programming and Evolvable Machines, 1:37-56.

Potter and De Jong, 1994
Potter, M. and De Jong, K. (1994).
A cooperative coevolutionary approach to function optimization.
In Davidor, Y. et al., editors, Parallel Problem Solving from Nature, volume 866 of LNCS, pages 249-257, Berlin. Springer-Verlag.

Potter and De Jong, 2000
Potter, M. and De Jong, K. (2000).
Cooperative coevolution: An architecture for evolving coadapted subcomponents.
Evolutionary Computation, 8(1):1-29.

Provine, 1986
Provine, W. (1986).
Sewall Wright, Evolution, Selected Papers.
The University of Chicago Press, Chicago, IL, USA.

Punch, 1998
Punch, W. (1998).
How effective are multiple populations in genetic programming.
In Koza, J. et al., editors, Proceedings of the Third Annual Conference on Genetic Programming, pages 308-313, Madison, WI, USA. Morgan Kaufmann.

Punch et al., 1996
Punch, W., Zongker, D., and Goodman, E. (1996).
The royal tree problem, a benchmark for single and multi-population genetic programming.
In Angeline, P. and Kinnear, Jr., K., editors, Advances in Genetic Programming 2, chapter 15, pages 299-316. The MIT Press, Cambridge, MA, USA.

Rechenberg, 1965
Rechenberg, I. (1965).
Cybernetic solution path of an experimental problem.
Library Translation 1122, Royal Aircraft Establishment, Farnborough, UK.

Reeves, 1995
Reeves, C., editor (1995).
Modern heuristic techniques for combinatorial problems.
McGraw-Hill, London.

Rosca, 1995a
Rosca, J. (1995a).
Entropy-driven adaptive representation.
In Rosca, J., editor, Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pages 23-32, Tahoe City, CA, USA.

Rosca, 1995b
Rosca, J. (1995b).
Genetic programming exploratory power and the discovery of functions.
In McDonnell, J. et al., editors, Proceedings of the Fourth Conference on Evolutionary Programming, pages 719-736, San Diego, CA. MIT Press.

Rosca, 1997a
Rosca, J. (1997a).
Analysis of complexity drift in genetic programming.
In Koza, J. et al., editors, Proceedings of the Second Annual Genetic Programming Conference, pages 286-294, Stanford University, CA. Morgan Kaufmann.

Rosca, 1997b
Rosca, J. (1997b).
Hierarchical Learning with Procedural Abstraction Mechanisms.
PhD thesis, Department of Computer Science, The College of Arts and Sciences, University of Rochester, Rochester, NY 14627, USA.

Rosca and Ballard, 1995
Rosca, J. and Ballard, D. (1995).
Causality in genetic programming.
In Eshelman, L., editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 256-263, Pittsburgh, PA, USA. Morgan Kaufmann.

Rosca and Ballard, 1996
Rosca, J. and Ballard, D. (1996).
Discovery of subroutines in genetic programming.
In Angeline, P. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2, chapter 9, pages 177-202. MIT Press, Cambridge, MA, USA.

Rosca and Ballard, 1999
Rosca, J. and Ballard, D. (1999).
Rooted-tree schemata in genetic programming.
In Spector, L. et al., editors, Advances in Genetic Programming 3, chapter 11, pages 243-271. MIT Press, Cambridge, MA, USA.

Ryan, 1994
Ryan, C. (1994).
Pygmies and civil servants.
In Kinnear, Jr., K., editor, Advances in Genetic Programming, chapter 11, pages 243-263. MIT Press, Cambridge, MA.

Ryan et al., 1998
Ryan, C., Collins, J. J., and O Neill, M. (1998).
Grammatical evolution: Evolving programs for an arbitrary language.
In Banzhaf, W. et al., editors, Proceedings of the First European Workshop on Genetic Programming, volume 1391 of LNCS, pages 83-95, Paris. Springer-Verlag.

Shapiro, 1990
Shapiro, S., editor (1990).
Encyclopedia of Artificial Intelligence.
Wiley, New York, NY.

Siegel, 1956
Siegel, S. (1956).
Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill Book Company, Inc., New York.

Smith and Harries, 1998
Smith, P. and Harries, K. (1998).
Code growth, explicitly defined introns, and alternative selection schemes.
Evolutionary Computation, 6(4):339-360.

Smith and Bonacina, 2003
Smith, R. and Bonacina, C. (2003).
Mating restriction and niching pressure: Results from agents and implications for general EC.
In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2724 of LNCS, pages 1382-1393, Chicago, IL, USA. Springer-Verlag.

Smith et al., 1993
Smith, R., Forrest, S., and Perelson, A. (1993).
Searching for diverse, cooperative subpopulations with genetic algorithms.
Evolutionary Computation, 1(2):127-149.

Soule and Foster, 1997
Soule, T. and Foster, J. (1997).
Code size and depth flows in genetic programming.
In Koza, J. et al., editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 313-320, Stanford University, CA, USA. Morgan Kaufmann.

Soule and Foster, 1998
Soule, T. and Foster, J. (1998).
Effects of code growth and parsimony pressure on populations in genetic programming.
Evolutionary Computation, 6(4):293-309.

Soule and Heckendorn, 2002
Soule, T. and Heckendorn, R. (2002).
An analysis of the causes of code growth in genetic programming.
Genetic Programming and Evolvable Machines, 3(3):283-309.

Spector, 1996
Spector, L. (1996).
Simultaneous evolution of programs and their control structures.
In Angeline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2, chapter 7, pages 137-154. MIT Press, Cambridge, MA, USA.

Spector and Luke, 1996
Spector, L. and Luke, S. (1996).
Cultural tansmission of information in genetic programming.
In Koza, J. et al., editors, Proceedings of the First Annual Conference on Genetic Programming, pages 200-208, Stanford University, CA, USA. MIT Press.

Stoffel and Spector, 1996
Stoffel, K. and Spector, L. (1996).
High-performance, parallel, stack-based genetic programming.
In Koza, J. et al., editors, Proceedings of the First Annual Conference on Genetic Programming, pages 224-229, Stanford University, CA, USA. MIT Press.

Tackett, 1994
Tackett, W. (1994).
Recombination, Selection, and the Genetic Construction of Computer Programs.
PhD thesis, University of Southern California, Department of Electrical Engineering Systems, USA.

Tackett and Carmi, 1994
Tackett, W. and Carmi, A. (1994).
The donut problem: Scalability and generalization in genetic programming.
In Kinnear, Jr., K. E., editor, Advances in Genetic Programming, chapter 7, pages 143-176. MIT Press, Cambridge, MA, USA.

Tanese, 1987
Tanese, R. (1987).
Parallel genetic algorithms for a hypercube.
In Grefenstette, J., editor, Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, pages 177-183, Hillsdale, NJ, USA. Lawrence Erlbaum Associates.

Tanese, 1989
Tanese, R. (1989).
Distributed genetic algorithms.
In Schaffer, J., editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 434-439, San Mateo, CA, USA. Morgan Kaufmann.

Tongchim and Chongstitvatana, 1999
Tongchim, S. and Chongstitvatana, P. (1999).
Speedup improvement on automatic robot programming by parallel genetic programming.
In Proceedings of IEEE International Symposium On Intelligent Signal Processing and Communication Systems, pages 77-80, Thailand. IEEE Press.

Tongchim and Chongstitvatana, 2000
Tongchim, S. and Chongstitvatana, P. (2000).
Comparison between synchronous and asynchronous implementation of parallel genetic programming.
In Proceedings of the 5th International Conference for Artificial Life and Robotics, pages 251-254, Japan.

Turing, 1950
Turing, A. (1950).
Computing machinery and intelligence.
Mind, (59):433-460.

Ursem, 2002
Ursem, R. (2002).
Diversity-guided evolutionary algorithms.
In Guervós, J. M. et al., editors, Parallel Problem Solving from Nature, volume 2439 of LNCS, pages 462-471, Granada, Spain. Springer.

Whigham, 1995
Whigham, P. (1995).
Grammatically-based genetic programming.
In Rosca, J., editor, Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pages 33-41, Tahoe City, CA, USA.

Whitley et al., 1997
Whitley, D., Rana, S., and Heckendorn, R. (1997).
Island model genetic algorithms and linearly separable problems.
In Corne, D. and Shapiro, J., editors, Proceedings of AISB Workshop on Evolutionary Computation, volume 1305 of LNCS, pages 109-125, Manchester, UK. Springer.

Wineberg and Oppacher, 2003
Wineberg, M. and Oppacher, F. (2003).
Distance between populations.
In Cantú-Paz, E. et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2724 of LNCS, pages 1481-1492, Chicago, IL, USA. Springer-Verlag.

Wolpert and Macready, 1997
Wolpert, D. and Macready, W. (1997).
No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82.

Wright, 1931
Wright, S. (1931).
Evolution in mendelian populations.
Genetics, 16:97-159.

Wright, 1932
Wright, S. (1932).
The roles of mutation, inbreeding, crossbreeding, and selection in evolution.
In Jones, D., editor, Proceedings of the Sixth International Congress of Genetics 1, pages 356-366.

Zhang and Mühlenbein, 1995
Zhang, B.-T. and Mühlenbein, H. (1995).
Balancing accuracy and parsimony in genetic programming.
Evolutionary Computation, 3(1):17-38.

Zhu and Leung, 2002
Zhu, Z.-Y. and Leung, K.-S. (2002).
Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems.
In Fogel, D. et al., editors, Proceedings of the Congress on Evolutionary Computation, pages 837-842, Honolulu, USA. IEEE Press.



S Gustafson 2004-05-20