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Abstract. A vast number of very successful applications of Memetic
algorithms (MAs) have been reported in the literature in the last years
for a wide range of problem domains. The majority of the papers dealing
with MAs are the result of the combination of highly specialised pre-
existing local searchers and usually purpose-specific genetic operators.
Moreover, those algorithms require a considerable effort devoted to the
tuning of the local search and evolutionary parts of the algorithm.

We have demonstrated in our previous work (see references below), that
given a range of possible local search strategies available to a Memetic
Algorithm, the optimal choice of which one must be used is not only
problem and instance dependent but also tightly related to the state of
the search process itself. We also showed that it is indeed possible to
produce Memetic Algorithms that adapt on-the-fly to those situations
for a variety of problem domains.

In this paper we continue our studies of the design of robust Memetic
Algorithms by introducing the concept of “self-generating” Memetic Al-
gorithms. As mentioned above the success of a Memetic Algorithm de-
pends on the pre-existence of powerful local searchers. Here we allow the
Memetic Algorithm to create its local searchers and to co-evolve the
behaviours it needs to successfully solve a problem.

1 Introduction

Although a number of very successful applications of Memetic algorithms have
been reported in the literature, many of these results not only arise from highly
specific combinations of specialised operators (e.g. [36],[35]) but also require
considerable tuning of the local search and evolutionary parts of the algorithm.
We have demonstrated previously that, given a range of possible local search
strategies available to an M A, the optimal choice is not only problem dependent
but also strongly related to the state of the search process itself, and we showed
that it is indeed possible to produce Memetic Algorithms that adapt to those
situations[24],[25],[6],[28],[30] for a variety of problem domains and situations.
This highlights some important issues that must be addressed if the use of
these new search algorithms is to progress beyond the research laboratory and
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into the real-world. Foremost amongst these is the requirement that in order
to have greater applicability, variants of MAs are needed that do not require a
detailed knowledge of the problem structure and a subtle understanding of the
interplay of local search and evolutionary operators; what it is needed is an MA
that can automatically discover the specific kind of local search that is suitable
to the instance the algorithm is trying to solve. Moreover, it would be expected
that even when no “silver bullet” local search heuristic is known for a given
NP-hard optimization problem (e.g. like Lin-Kernighan or K-opt heuristics for
TSP or Graph Partitioning) these new Self-Generating Memetic Algorithms will
still be competent[19].

In this paper we propose to investigate a novel means of automating the pro-
cess of discovering successful local search strategies for MAs where the search
strategies (themselves enconded as individuals of a GP population) are co-
evolved alongside the population of potential solutions. The representation of
local search operators (memes) can include features such as the acceptance strat-
egy, the maximum number of neighborhood members to be sampled, the number
of iterations for which the meme should be run, a decision function that will tell
the meme whether it is worth or not to be applied on a particular individual
and, perhaps more importantly, the move operator itself in which the meme will
be based( see [24] for a discussion of these issues).

This new approach differs from standard adaptive and self-adaptive evo-
lutionary algorithm (e.g. [13],[3],[47],[22]), adaptive memetic algorithms (e.g.
[20],[32],][24]) and also hyperheuristics (e.g. [11],[10]). Those approaches mainly
focus on adapting the probabilities of applying the genetic operators, the size of
the populations (e.g [48]) or the decision of which operator to choose for local
search out of a fix set of local searchers[28],[25],[6].

Of particular relevance to this paper are adaptive MAs which come in three
main flavors. One option is to adapt on-line the decision on which points are
worth of considering for local search in such a way that precious cpu time is not
wasted with solutions that are local-optima or close to optima [20]. Land [32]
adapted the intensity of local search, that is, how deep the local search must be
done and also utilizes the concept of “sniffs” to gouge the potential benefits of
doing local search in the vicinity of a solution.

In turn, Krasnogor[24] introduced Multimeme Algorithms where a finite set
of local searchers (codified as memeplexes) where given to the memetic algo-
rithm and the choice of which one must be used was learned on the fly. In
Hyperheuristics, in contrast, there is no co-evolution neither a population of so-
lutions is maintained. In hyperheuristics what is learn is the best way to apply
in tandem a set of heuristic methods (mainly constructive methods) that incre-
mentally builds up a solution to a problem. All these methods can be expected to
perform well in problems for which a well studied and tested set of optimization
heuristics is known a priori. Moreover they lack the ability to create or discover
novel local searcher if the need arises (e.g. the search is stuck in a local opti-
mum for a long period of time). It is this feature, the creative design of new local
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search heuristics on-the-fly, that distinguishes Self-Generating Metaheuristics (in
particular Self-Generating MAs) from the previous approaches mentioned above.

2 Toward truly “Memetic” Memetic Algorithms

Memetic algorithms are not the first kind of algorithms to draw inspiration
from natural phenomena. In this case the inspiration came from memetic the-
ory. However, unlike Simulate annealing, Ant Colony optimization, GAs, etc.,
scholars working on MAs, as will be argued later, departed considerably from
the metaphor and ignored its main features.

The common use of the term “memetic algorithm” refers to an evolution-
ary algorithm that employs as a distinctive part of its main evolutionary cycle
(mutation, crossover and selection), a local search stage.

The name “memetic algorithm” is a very contested label that stirs critics and
controversies among researchers and practitioners. We take the position that by
labeling these algorithms as memetic algorithms and not calling them something
else (e.g. lamarckian GAs, genetic local search, hybrid GAs, etc.) there is much
to be learned. But for this to happen we need to put back the “memetic” into
memetic algorithms.

Memetic theory started as such with the definition given by R. Dawkins of a
meme as a unit of cultural inheritance[14]'. Many other researchers and philoso-
phers “flirted” with the idea that cultural phenomena can somehow be explained
in evolutionary terms even before Dawkins’ introduction of a meme. Other sym-
bols were introduced to refer to the elementary unit of cultural change and/or
transmission (e.g. m-culture and i-culture [8], culture-type [44], etc.). See [18] for
a comprehensive analysis. The merit of Dawkins contribution can be attributed
to his insight into correctly assigning a new signifier, i.e. a label or symbol, to the
thing being signified, i.e. the unit of cultural transmission. The term meme was
a new word hence it was not loaded with preconceptions and misconceptions.
From the computer sciences perspective it was appealing because it defined that
concept as a discrete structure which can be easily harnessed in a computer
program and, as we will show in this paper, can be evolved to suit different
problems, different instances of the same problem and different stages of the
search process itself.

The fundamental innovation of memetic theory is the recognition that a dual
system of inheritance, by means of the existence of two distinct replicators, mold
human culture. Moreover, these two replicators interact and co-evolve shaping
each other’s environment. As a consequence evolutionary changes at the gene
level are expected to influence the second replicator, the memes. Symmetrically,
evolutionary changes in the meme pool can have consequences for the genes.

Critics of memetic theory often rebuff that the meme idea is useless as it
has not been found yet the basic encodingunit or representation building block
of what constitute a meme. In our opinion this is an unscientific approach that

! The definition was later refined in [15]
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bears no relation with reality. The reader must note that before the double-helix
nature of the DNA was discerned, and even before the discovery of the DNA as
the carrier of genetic information, the Darwins (Charless and Erasmus), Wallace
and Mendel already built the basis of our current understanding of evolutionary
theory; molecular biology came much later. It is not reasonable then, to dismiss
Memetic theory on the previously mentioned ground. The reader is invited to
refer to[1] for recent papers on Memetic theory.

2.1 Memetic Theory in Evolutionary Computation

In any of the major evolutionary computation paradigms, e.g. GAs, Evolution
Programs, Evolutionary Strategies, GPs, etc, the computation cycle shown in
graph 1 takes place.
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Fig. 1. Evolutionary genetic cycle.

In figure 1 a hypothetical? population of individuals is represented at two
different points in time, generation 1 (G1) and at a later generation (G2). In
the lower line, G; for i = 1,2 represents the distribution of genotypes in the
population. In the upper line, P; represents the distribution of phenotypes at
the given time. Transformations T4 account for epigenetic phenomena, e.g. in-
teractions with the environment, in-migration and out-migrations, individual
development, etc., all of them affecting the distribution of phenotypes and pro-
ducing a change in the distribution of genotypes during this generation. On the
other hand transformations T account for the Mendelian principles that govern
genetic inheritance and transforms a distribution of genotypes G} into another
one (2. Evolutionary computation endeavors concentrate on the study and as-
sessment of many different ways the cycle depicted in 1 can be implemented.
This evolutionary cycle implicitly assumes the existence of only one replicator:
genes.

On the other hand what memetic algorithmicists should somehow investigate,
if they were more faithful to the natural phenomena that inspired the method-
ology, is the implementation of a more general and complex dual evolutionary
cycle where two replicators co-exist. This® is shown in 2.

2 This graph is adapted from [18] page 114.
% Graph adapted from [18] page 186.
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Fig. 2. Coevolutionary memetic-genetic cycle.

In the context of memetic algorithms, memes represent instructions to self-
improve. That is, memes specify sets of rules, programs, heuristics, strategies,
behaviors, etc, individuals can use in order to improve their own fitnesses under
certain metric.

As we mentioned earlier, the fundamental difference between the later graph
and the former resides in the fact that graph 2 reflects a coevolutionary system
where two replicators of a different nature interact. Moreover the interactions
between genes and memes are indirect and mediated by the common carrier of
both: individuals. A truly memetic system should not be confused with other
coevolutionary approaches where different “species”, sub-populations or just dif-
ferent individuals interact by ways of a combination of cooperation, competition,
parasitism, symbiosis, etc. In coevolutionary approaches like those described by
[21],[38],[39],[40],[41],[43] and others, only Mendelian transformations are allowed
and sometimes in-migration and out-migration operators are also included. In
a memetic system, memes can potentially change and evolve using rules and
time scales other than the traditional genetic ones. In the words of Feldman and
Cavalli-Sforza[7] memetic evolution is driven by:

...the balance of several evolutionary forces: (1) mutation, which is
both purposive (innovation) and random (copy error); (2) transmission,
which is not as inert as in biology [i.e., conveyance may also be horizon-
tal and oblique]; (3) cultural drift (sampling fluctuations); (4) cultural
selection) (decisions by individuals); and (5) natural selection (the con-
sequences at the level of Darwinian fitness) ...

In graph 2 we have the same set of transformations as before between genes
and phenotypes, but also meme-phenotypes and memes-memes interactions are
shown. There are mainly two transformations for memes that are depicted, T¢
and Tp. Transformations T¢ represents the various ways in which “cultural”
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instructions can re-shape phenotypes distributions, e.g. individuals learn, adopt
or imitate certain memes or modify other memes. Tp, on the other hand, re-
flects the changes in memetic distribution that can be expected from changes in
phenotypic distributions, e.g. those attributed to teaching, preaching, etc.
Memetic Algorithms, as they were used so far, failed completely (or almost
completely) to implement this dual inheritance system to any degree. Conse-
quently, it is not surprising that researchers hesitate to call a GA (or other
evolutionary approach) that uses local search a memetic algorithm.

3 Two Show Case Applications

In this paper we intend to investigate the ability of a memetic algorithm (in
the Dawkins sense) to discover concurrently the behaviors that are appropriate
to use as local searchers and ultimately improve the solutions to the problem
the MA needs to solve. To illustrate the potentialities of this approach we will
first revisit some previous work we have done on these lines using the Protein
Structure Prediction Problem and then, as a second show case and experimental
test bed, we will use NK-Landscapes.

3.1 The Protein Structure Prediction Case

The primary structure of a protein is defined by its amino acid sequence. When
this linear arrangement of monomers folds in space, the protein adopts its native
state. This tridimensional structure, also known as tertiary structure, determines
the protein’s functionality. It’s assumed that the amino acid sequence completely
determines the tertiary structure.

Proteins are too complex to allow exact modeling with today’s computational
power, moreover, scientist disagree on what constitute the right model that must
be used. To study optimization techniques for the PFP, reduced models are used.

The most simple models used to represent proteins are based on lattices (of
2 and 3 dimensions), where each site in the lattice is filled by at most one amino
acid; the correspondence between amino acids and positions is called embedding
of the protein, and when the embedding is injective, it is called self avoiding.
Rectangular and triangular lattices have been used (See figures 3(a) and 3(b)).

The mostly used lattice model is the so called HP Model or Dill’s model
[16]. In this model the twenty amino acids are classified in just two kinds,
Hydrophobics and hydrophilics (or Polars), so a protein w could be thought
as a word in a binary alphabet, w € {H, P}*. However an over simplification
this might seem, it is known that the major driving force for protein folding is
the hydrophobic force [17]. The energy function takes into account the inter-
actions between topological neighbors of type H (these interactions are called
bonds or contacts). Topological neighbors are pairs of adjacent amino acids in
the lattice that are not consecutive in the sequence. Different energy functions
could be obtained considering alternative amino acid interactions.
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(a) (b)

Fig. 3. Embedding in a Rectangular Lattice (a) and a Triangular Lattice (b). Black
squares represent H’s and white squares represent P’s. Dotted lines between two amino
acids represent a contact.

The problem and several variations were shown NP-Complete by [2], [12] and
[4] among others.

Figure 4 taken from our earlier work[23] is a graphical representation of the
kind of Memetic Algorithms we intend to construct.

In gene space: Crossover,Mutation,Selection

GENES _FFFLFLLRFFFFR)

Inmeme space: Replication,Mutation,Selection

Fig. 4.

In the figure, a protein in the HP model and its structure is presented. The
quality of the structure is measured by the number of hydrophobic topological
neighbors (marked with a small dot) as prescribed by the HP-model. In our
MAs, individuals are encoded by a pair (chromosome, meme), where a chro-
mosome represents a structure for the protein instance that is being solved and
the meme represents a behaviour, or more precisely, the pattern of local search
to use. In figure 4 the “raw” individual (i.e. the individual that did not use its
memes to improve itself) has a fitness of 1 (represented by the blue dot). During
local search individuals can select one or more memes (from a memepool) to op-
timize themselves. Individuals can also imitate others individuals behaviours by
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copying their memes[5]. The memes themselves can evolve by an independent
evolutionary process or any other conceivable creative process. When genera-
tions goes by, individuals will come up with a set of behavioural or local search
memes that reshape the structures encoded by their chromosomes. In the figure
two alternative manifestations of the original individual have better fitness that
the raw genetically-encoded protein structure (fitness 3 and 4 respectively).

In [31],[26] and [42] we encoded the local search memes as rules of the form
initial Pattern — endPattern. As it should be obvious the rule set cannot, in
general, be constructed by hand because it is very difficult to deduce which local
interactions lead to global behavior, so some kind of automatic procedure has to
be used. In those papers a GA was used to evolve the rules. In figures 5(a) and
5(b) (reproduced from [31]) we show the two types of rules used.

In figure 5(a) the main aim is to discover highly designable substructures.
Moreover, the use of rules with a length of at least 6 allows the discovery of
substructures supporting folding patterns [29],[27].

Arule Arule
(rule's detector) Fﬂ% (rule's detector)
(rule's effector) (rule's effector)
Application of the rule above: Application of the rule above:

(UILILILILICJUIUILILILIL]  t=k POPEPPOEPPPE]  t=k
v '

UILTLICTLILICTOILEILIE)  t=k+1  PPOPEPEBEEPPPBEI  t=k+1
(a) (b)

Fig. 5. A CA Rule in the first approach(a) and the second approach(b).

The second approach (shown in figure 5(b)) differs from the first in that a
meme models not only substructures but also the sequence-structure association.
The experimental details and a more complete account of this approach for PSP
cannot be done here for reasons of space. However we want to emphasize that
our algorithm was able to discover folding patterns, that is, secondary structure
sub-units. For details please refer to the references mentioned before

3.2 The NK-Landscapes Case

NK-Landscapes can be defined as:
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(n, k) Landscapes

Instance: Two integers n, k|0 <n,0 <k <n-—1
and a n x 28! matrix E with elements

sampled randomly from the U(0, n) distribution.

FE represents the epistatic interactions of k bits.
Solution: A binary string S, such that |S| = n.
Measure: fitness(S) = % w31 fi(Si, Siy, -+, Siy)
with f;() an entry into E, S; the value of string S
at position ¢ and S, is the value of string S

at the 7 — th neighbour of bit .

The neighbours, not necessarily adjacent, j of bit ¢ are part of the input.

NK-Landscapes are particularly useful to understand the dynamics of evo-
lutionary search[45] (particularly MAs) as they can be tunned to represent low
or high epistasis regimes (i.e. low or high k values respectively) with the ex-
treme of an uncorrelated random fitness landscape for the case of k = n — 1.
Moreover, the optimization version of this problem can be solved in polynomial
time by dynamic programming if the neighborhood structure used is that of
adjacent neighbours or can be NP-Hard if the structure used is that of random
neighbours[49].

NK-Landscapes have been the subject of intensive and varied studies. In [33]
Kaufmann et.al. explore a phase change in search when a parameter 7 of a local
search algorithm reaches a certain critical value on some NK-Landscape problems
. In their paper the authors show experimentally that the quality of the search
follows an s—shape curve when plotted against 7 making evident a change in
phase. M. Oates et.al. in [37] showed performance profiles for evolutionary search
based algorithms where phase changes were also present. Krasnogor and Smith
in [30] and Krasnogor in [24] showed the existence of the “solvability” phase
transition for GAs (instead than LS) and demonstrated that a self-adapting MA
can learn the adequate set of parameters to use. Merz [34] devotes at least one
whole chapter of his Ph.D. dissertation to the development of efficient Memetic
Algorithms for this problem (we will return to his MAs later on). With a different
target as the object of research O.Sharpe in [46] performs some analysis on the
parameter space of evolutionary search strategies for NK landscapes.

As the NK-Landscapes represent a rich problem they are an ideal test case
for our purposes. We will describe the behavior of our Self-Generating Memetic
Algorithms in 4 different regimes: low epistasis and poly-time solvable, high
epistasis and poly-time solvable, low epistasis and NP-hard and high epistasis
and NP-hard.

In [24] and in previous sections we argued briefly about the need to creatively
adapt every aspect of the local searchers. In this part of the paper we will focus
only on the self-generation of the move operator itself as a proof of concept. The
other aspects are actively being investigated.

Following the terminology of [24] our MAs will use self-adapting helpers, i.e.,
memes for which the code that represent their behaviour is subject to changes (in
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this case artificial evolution). Moreover, the MA is a D = 4 Memetic Algorithm
which implies that local search occurs as an independent process of Mutation
and Crossover?. The MA will be composed of the two simultaneous processes
as depicted in 2. Individuals in the MA population will be composed of genetic
and memetic material. The genetic material will basically represent a solution to
NK-Landscapes problems (i.e. a bit string) while the memetic part will represent
“mental constructs” to optimize the NK-Landscape string. As such we will be
evolving individuals whose goal is to self-optimize.

After [31],[26],[23] and building on knowledge gained through the experi-
mental design for the results reported in [24] the local searchers are going to be
represented as rules of the form initial Pattern — endPattern. As we mention
earlier the rules were associated to local search patterns for the PSP and the
same will be the case here.

The Self-Generating Memetic Algorithm The pseudocode in figure 6 de-
picts the algorithm use to solve the NK-Landscapes.

Memetic_Algorithm():
Begin
t=0;
/* We put the evolutionary clock (generations), to null */
Randomly generate an initial population P(t);
Repeat Until ( Termination Criterion Fulfilled ) Do
Variate individuals in M (¢);
Improve_by_local_search( M(t));
Compute the fitness f(p) Vp € M(t) ;
Generate P(¢t+ 1) selecting some individuals from P(t) and M(¢);

t=t+1;
Ood
Return best p € P(t —1);
End.

Fig. 6. The memetic algorithm employed.

The initial population in P is created at random. As mentioned before, each
individual is composed of genetic material in the form of a bit string (B). The
bit string represent the solution to the NK instance being solved. The memetic
material is of the form * — S where the * symbol matches any bit in the solution
string and S is another bit string. The meaning of memes will be explained later
on. The only variation mechanism is bitwise mutation (applied with probability

* See the Memetic Algorithms taxonomy in [24].
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0.05) to the chromosomes. The replacement strategy was a (20,50). There is
no genetic crossover but the SIM mechanism, as described in [30], was used to
transfer memes between individuals. Memetic mutation occurs with an innova-
tion rate[24] of 0.2. A meme can be mutated (with equal probability) in three
ways: either a random bit is inserted in a random position, or a bit is deleted
from a random position, or a bit is flipped at a random position. The length of
memes cannot decrease below 0 nor increase beyond 3k for an (n, k)—problem.

The Local Search Procedure As mentioned before, a meme is represented as
a rule of the form * — S. During the local search stage this meme is interpreted
as follows:

Every bit in the chromosome B has the opportunity to be improved by steep-
est hill-climbing. In general NK-Landscapes are epistatic problems so flipping
only one bit at a time cannot produce reasonable improvements except of course
in problems with very low k. To accommodate that fact, for each bit, one wants
to optimize the value of that bit and that of |S| other bits. A sample of size
n is taken from all the (|S| + 1)! possible binary strings. Based on the content
of S, these sample strings serve as bits template with which the original chro-
mosome B will be modified. If |S| = 0 then only B; (the it" bit of B) will be
subjected to hill-climbing. On the other hand, if |S| > 0 then the local searchers
scans the bits of S one after the other. If the first bit of S is a 0, then the bit
B(i+1) will be set accordingly to what one of the n samples template mandates.
On the other hand, if B; is a 1 then bit B, %, will be set as what one of
the n samples template mandates. Here r is a random number between 0 and
n — 1. By distinguishing in S between ones and ceroes memes can reflect the
adjacent neighbour or the random neighbour version of the NK-landscapes. The
larger the size of S the more bits will be affected by the local search process.
As an example consider the case where the rule is * — 0000. This rules implies
S = 0000. In this case, for every bit ¢ in B we will produce a sample of size n
out of the possible 2° binary strings. Each one of these samples will be used as
a template to modify B, in this case as S is built out of all 0 a fully-adjacent
neighbourhood is considered. Suppose B = 101010101010111110 and the bit to
be optimized is the fourth bit. B4 = 0 in the example and its four adjacent
neighbours are Bs = 1,Bg = 0,B; = 1,Bg = 0. If one of the n samples is 11111
then B will be set to B’ = 101111111010111110 provided B’ has better fitness
than B. The process is repeated in every bit of B once for every sample in the
sample set.

In our implementation, and because our experiments are meant only as a
proof of concept, we did not use all the code optimization described in [34] nor
we use an exhaustive k — opt or Lin — kernighan heuristic as Merz employed.
Certainly his recommendations on how to improve the efficiency of the code (in
particular those related to the fitness updates) will be needed if larger problems
are going to be studied. The evolved memes induce a variable-sampled k — opt
local searcher. We say variable as k varies with the size of S and it can be as
small as 0 or as large as 3 x k. It is sampled as we do not exhaustively explore
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all the 2¥! possible ways of settings the bits in a chromosome but rather take
a reduced sample of size n.

4 Experiments

In previous sections we described our self-generating MAs. What sort of behav-
iors we expect to see emerging? Four different scenarios needs to be analysed: low
epistasis-poly-time solvable, high epistasis-poly-time solvable, low epistasis-NP-
hard and high epistasis-NP-hard landscapes. The level of epistasis is controlled
by the n and k. The closer k is to 0 the more negligible the epistatic interactions
among loci. If k£ grows up to n — 1 then the induced problems is a random field.
The transition between polynomial time solvability to NP-hardness depends on
the type of neighborhood used as it was explained before. We should expect the
emergence of short strings (i.e. |S| not too big) for the low epistasis regimes
while longer strings will be favored in high epistasis cases. We should be able
to compare the length of the evolved local searcher with the k of the problem
that is being solved, that is we expect to see memes emerging with lengths close
to k. We should probably also see distinct patterns of activity for the different
problem regimes. The range of problems we experimented with are:

— low epistasis, poly-time solvable: (50,1), (50,4) with adjacent neighbours.

— high epistasis, poly-time solvable: (50, 8), (50, 10), (50, 12), (50, 14) with ad-
jacent neighbours

— low epistasis, NP-hard: (50, 1), (50,4) with random neighbours.

— high epistasis, NP-hard: (50, 8), (50, 10), (50, 12), (50, 14) with random neigh-
bours.

4.1 Results

In the following graphs we plot the evolution of the length of the meme associated
with the fittest individual as a function of time and the evolution of fitness. For
clarity, just 5 runs are depicted.

Low epistasis, poly-time solvable: In figures 7(a) and 7(b) we can observe
the behaviour of the system. For the case n = 50,k = 1 the main activity
occurs at the early generations (before generation 4). After that point the system
becomes trapped in a local (possible global) optimum. The length of the memes
evolved oscillates between 1 and 2. As the allowed length are restricted to be
in the range [0,3 * k], the expected length of memes is 1.5. It is evident that
the problem is solved before any creative learning can take place. When the
Self-Generating MA is confronted with problem n = 50,k = 4 (a value of k just
before the phase transitions mentioned in previous sections) the length of the
meme in the best run oscillates between a minimum value of 3 (after generation
1) and a maximum of 10 for the run marked with a thick line (the best run). In
this case the expected length (if a purely random rule was chosen) for a meme
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Fig. 7. NK(50,1) in (a), NK(50,4) in (b) and NK(50,8) in (c). Adjacent neighbours.
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is 6 which is the most frequently visited value. For these, the simplest possible
NK-Landscape regimes, it does not seem to be of benefit to learn any specific
meme, but rather, a random rule seems to suffice.

High epistasis, poly-time solvable: In figure 7(c) we can see the system’s
behaviour for a value of k after the phase transition mentioned in [33] and
[24]. In this case there is effective evolutionary activity during the whole period
depicted and we can see clearly that the length of the meme employed by the
most successful individual converges towards the value of k( in this case 8). If a
purely random rule was used the expected length would have been 12. The case
shown in figure 8(a) is even clearer. All but one of the runs converge towards a
meme length almost identical to k = 10, except for one that is very close to the
expected length of 15.

The same trends can be seen in figures 8(b) and 8(c) where meme lengths
converge to values around to £k = 12 and k£ = 14 respectively. It is interest-
ing to note that although the values are very close to our predictions they do
not remain at a fixed value but rather oscillates. This is a very intriguing be-
haviour as it resembles the variable-neighborhood nature of Lin-Kernighan, the
most successful local search strategy for NK-Landscapes and other combinato-
rial problems. It will be interesting to investigate on the range of values that the
Memetic Algorithms presented in [34] (which uses K — opt and Lin-Kernighan)
effectively employs; we speculate that the range of changes, i.e. the number of
bits modified in each iteration of LS, will be close to the epistatic parameter of
the problem instance.

Low epistasis, NP-hard: With the graph in figure 9(a) we start to investigate
the behaviour of the Self-Generating MA on the NP-Hard regime (i.e. the ran-
dom neighborhood model). The picture in figure 9(a) is similar to the adjacent
neighborhoods version of 7(a) except that oscillations are more frequent in the
former. Comparisons of 9(b) and 7(b) reveal very similar trends.

High epistasis, NP-hard: The experiments with (n = 50,k = 8) under the
random neighbours model reveal marked differences with the consecutive neigh-
bour model (see figures 9(c) and 7(c) respectively). While in the later all the
runs converged toward a meme length very close to k, the random model shows
a richer dynamics. Meme length were divided into 3 groups. In one group, the
emerged meme length were very close to the value of k, 8 in this case. The other
two groups either continually increase the size of the memes or decreased it. Two
of the most successful runs are identified with a cross or circle and each belong
to a different group. Interestingly enough, the run that converges first to the
local optimum is the one that uses very short memes, in contrast, the one that
uses memes length equivalent to a value of k shows a continued improvement.
It is important to note that none of the evolved memes converged towards the
expected length of 12.
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Figure 10(a) seems to reveal a similar 3-grouped pattern.

The runs that correspond to instances of (n = 50, k = 12) differ notably from
previous ones.

The meme length seems to be converging towards a value well below the
expected length of 18 and even the epistatic value k& = 12 for these problems.
However, between generation 34 and 68 the meme lengths oscillates very close
to k = 12 values.

The next figure, 10(c), presents similar features as that of 10(b) but two
clusters appear, one that suggest length around the value of k and another with
length values of 6.

From the analysis of the previous graphs we can see that our expectations,
namely, that memes of length proportional to k will arise were confirmed. How-
ever, other interesting features are evident. There are clear differences between
memes that are evolved to solve the poly-time solvable cases and the NP-hard
cases. In the first case all memes length and for & > 4 converged toward values
in the proximity of k. However, for the random neighborhood model and for
high epistasis (k > 4) problems, the runs were clustered mainly around either
meme lengths of values close to k or to lengths around 6 (regardless the value of
k). This is indeed a very interesting behaviour that deserves further studies as
values of k in the range [4, 5, 6] are on the edge of the phase transitions described
in [33],[24] and [30], that is, between 4,5 or 6 bits were the optimum number of
bits that need to be considered to boost the efficiency of the search. Moreover,
in the case of the NP-hard random neighbourhood with & = 8 three clusters are
noted; we speculate that problems in this range are on the so called “edge of
caos” where emergent behaviours are more likely to occur[9],[45].

5 Conclusions

In this paper we argued that the label “Memetic Algorithm” can be contested
as long as truly memetic systems are not developed. We argued in favor in
changing the biological metaphor by introducing a second replicator, i.e. memes,
into Memetic Algorithms and by doing this putting back the memetic aspect into
play. From the optimization point of view there are obvious advantages on doing
so. MAs that follow the Dawking meaning can self-generate the local searchers
they need to use in order to improve solutions for a given problem. Moreover,
they will be able to adapt to each problem, to every instance within a class of
problem and to every stage of the search.

We presented insights on the self-generation of folding patterns for the Pro-
tein Structure Prediction Problem and also we explored the use of self-generating
MAs for NK-Landscapes. We found that the self-generating memes can adapt
to the kind of instance where they are being used for a wide range of problems
regimes.

It is our hope that researchers confronted with new problems for which there
are not “silver bullet” local search heuristics (like is the case for TSP and Graph
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Partitioning where K —opt and Lin-Kernighan are known to be extremely effi-
cient) with which to hybridize a Memetic Algorithm will try the obvious: the
Dawkins method of self-generation of local search behaviors, that is, the use of
memes.
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