Visualising Populations of Rooted Labeled Trees on
a Lattice

Steven Gustafson and Natalio Krasnogor
University of Nottingham
smg@cs.nott.ac.uk nxk@cs.nott.ac.uk

January, 2003

Abstract

This paper describes an algorithm for visualising rooted labeled
trees on a lattice, described by Daida [1]. The method for generating
points on the lattice is described and previous work is extended with a
technique for visualising populations of trees in three dimensions and
an accompanying measure for comparing populations based on their
three dimensional structure, which encapsulates many key features of
a population’s structural properties.

1 Rooted Labeled Trees

We define a rooted labeled tree T' as a set of nodes N, where N = FUT. T is
a set of symbols that label leaf nodes in the tree and F' is the set of symbols to
label internal nodes, where FNT = {}. The sets F, T represent functions and
terminals, respectively, in a parse tree representation of computer programs
(discussed in Section 5). Let us assume that the degree of a node labeled
by F is always 3 (except the root which has degree 2), and nodes from T
always have degree 1.

We further label the nodes in a tree T' by the standard array representa-
tion of binary trees, where a node n has the integer label k that serves as an
array index. A node at position k£ can then have edges leading to children
at positions k * 2 and k x 2 4+ 1. The root node in the tree has label £ = 1.

2 LATTICE POINTS GENERATION 2

Figure 1: A lattice for a full binary tree of depth 10. The root nodes
is denoted by the centermost point, at the mid-point of the center most
horizontal line.

2 Lattice Points Generation

Daida [1] notes that an absolute labeling and ordering of nodes allows the
construction of a lattice where a tree can be concisely and compactly vi-
sualised. The lattice consists of points on the circumference of concentric
circles, where each circle represents nodes at a particular depth (the greater
the depth the greater the radius of the circle). Figure 1 shows the lattice
for a full binary tree of depth 10 where each lattice point is connected to its
children points.

To create this visualisation, an algorithm is used to find points on the
circumference of concentric circles, where a circle representing depth d has
2¢ points (one for each node in the tree at depth d). The points on each
circle are labeled in increasing degree from degree 0 (where the origin is the
center of the circle, and degree 0 is due North). Points are labeled counter-
clockwise from degree 0, which places the points labeled £ * 2 and k2 + 1
closest to point k£ on the circle with the next smalled radius. Note in Figure
1, the root of the tree is at the center of the circle and lies in the middle of
the centermost line.

Figure 2 shows how the initial points are chosen on the set of concentric
circles. In the left figures, the circle with radius 0 is divided into 2 parts
and a point is place there (the origin) with the vertical line. The next circle
with radius 1 is divided into four parts with the horizontal line and points
are placed at the intersection of the circle and this line. The right figure

2 LATTICE POINTS GENERATION 3

Figure 2: Divide concentric circles into even parts and place points on the
intersection of the circle and division lines, avoiding points which would lie
at the same angle as previously placed points.

shows the placing of 8 points on the outermost circle.

The following algorithm divides a circle into p parts, where p = 2% is the
number of points on a circle with radius d. We find the coordinates of the 2¢
points on each circle and use the coordinates for every other point, skipping
the points which would lie on a line already used to divide smaller radius
circles (as described above) and would be at the same angle from previous
points.

function lattic_points (maxdepth)
for(depth=0, depth <= maxdepth+1, depth++)
points = exp(2,depth)
angle = (2 * PI)/points
for(p=1 , p <= points, p=p+2)
if(!(depth==1 && p==1))

x = depth * sin(p * angle)

y = depth * cos(p * angle)

output x,y

We generate the points which represent, in order, the locations for nodes
in an array representing binary trees. The final step is to then list our
full binary tree T as an array, k = 0,...,2% and pair each point with its
corresponding node.

To generate the proper edges, shown in Figure 1, we only need to do a
depth first search on this array of coordinate and node pairs to generate the

3 VISUALISING POPULATIONS OF TREES 4

Figure 3: Left: A binary tree with 7 nodes. Right: The same binary tree
projected onto a lattice where the root (highest node in the left figure) is
the centermost node in the figure.

beginning and end coordinate of each edge. Thus, a full binary tree is shown
in the left figure in Figure 3, where each point is marked with an circle.

3 Visualising Populations of Trees

While the above visualisation of a binary tree on a lattice is compact, we
also wish to understand the structure of a population of trees. To do this,
we generate a global binary tree, T(;, represented as an array (as described
above). Then, a depth first search is performed through every tree in the
population. For every node in every tree that is encountered at absolute
position k, increment T[k] by 1 (T¢[k] is initially 0). Plotting the same tree
in three dimensions with the height of each node representing the number
of trees in the population with a node in that position gives us a view of the
structure of the entire population.

Figure 4 shows the same tree from Figure 3 plotted in three dimensions.
The left figure of Figure 4 shows the points on the lattice in two-dimensions.
This tree represents a population of trees, where the height of a node cor-
responds to the number of times the population contains a tree with this
node.

4 COMPARING 3D POPULATION STRUCTURES 5

Figure 4: Left: A binary tree with 7 nodes on a lattice (from Figure 3.
Right: The same binary tree in three dimensions, which now represents a
forest of trees. This figure could represent a forest of three trees, one with
only a root, one with a root and two children, and one with a root and two
children and those children each with two children.

4 Comparing 3D Population Structures

It would be useful to compare different population structures without re-
ferring to the actual visualisation. We wish to capture the essence of the
visualisation in a measure.

To create a measure for comparing structures based on the visualisation
we identify the three key characteristics of the visualisation and incremen-
tally build a measure to capture those characteristics. Each point in our
visualisation is represented by a triplet of z,y, z, where z,y are the coordi-
nates on the XY plane and z is the height of the point, which represents the
number of times the population samples this node.

4.1 Total Nodes and Average Nodes in a Tree

The first characteristic is the total number of nodes in a population. Obvi-
ously, this rough measure allows smaller and bigger populations to be dis-
tinguished. The total nodes in the population is easily found by summing
all the zj values:), zy, where z; is the number of times the population
samples the node at position i in the absolute labeling of our trees.

4 COMPARING 3D POPULATION STRUCTURES 6

4.2 Area Approximation

Two populations may have equal number of nodes but differ dramatically in
the structure they take. The next characteristic is the overall area that the
structure occupies in three-dimensions. This value will be affected by fuller
subtrees which appear closer to the root. The population structure can be
defined as edges connecting each parent to its two children. In our array
representation, when a parent at absolute position k has a child at k*2 then
there is an edge from (k,k * 2). To assign a value to the structure that a
population creates in three-dimensions, we approximate the area under that
structure by finding the area under the edges, a plane perpendicular to the
XY-plane. The areas of these planes give more weight to nodes nearer to
the root in the current visualisation method.

The integral of the line/edge in three dimensions represented by the
coordinates of each parent and child pair, (z1,y1,21) and (29, y2, 22), points

can be described as: A
29 — 21
1
/0 otz do, (1)

where

A= \/(182 —x1)? + (y2 — y1)? (2)

The sum the above integrals for each (parent,child) pair in our graph
defines an area approximation. Note that this value will be highest when
every tree in the population represents a full binary tree, and lowest when
every tree in the population is a single node. We will refer to this measure
on a population as AM.

Figure 5 represents a sample of populations, their corresponding struc-
tures and measures. Note that if two populations pi,ps have the same
number of nodes n, then the population which has more nodes closer to
the root will have a higher AM value. This is because a population with
more nodes nearer to the root will have points with higher position in the
structure connected to children with longer edges. The same ordering of
structures could be found by a weighted summation of z; values, where the
weight decreases as the depth increases.

4.3 A Volume Approximation of 3D Structures

The area appriximation measure captures parent child relationships in the
population but fails to consider the relationships between nodes at the same

4 COMPARING 3D POPULATION STRUCTURES 7

77.51 % 78.8 %
106.5 % 136.97 %

Figure 5: Four structures and the corresponding area approximation mea-
sure, denoting the summation of areas under the edges.

depth, i.e. how balanced and full are the trees in the population. To in-
corporate this information into another measure of our three dimensional
structure, we now consider the volume that the structure occupies, a vol-
ume approximation, VM.

To approximate the volume, we define two types of polygons on our
original lattice, a triangle which has points of a parent and its two children,
and a quadrangle which has points of two neighboring parents at the same
depth, and two children, one child from each parent. The area of the polygon
is found by listing the coordinates of each polygon corner counter-clockwise
and summing the determinant of each adjacent coordinate. Thus, for points
defining a three sided polygon (zg,v0), (x1,¥1), (z2,y2), the area follows:

1

5 ((zoy1 — @1y0) + (212 — 291) + (2230 — T0y2)) (3)

Figure 6 shows our original lattice with polygons drawn in.

To find the volume of these polygon towers, where each polygon corner
has the height equal to that point/node’s occurrence in the population, we
simply approximate the height by summing the heights of each corner and
taking the average. An example of the three dimensional structure with
polygons drawn in Figure 7.

4 COMPARING 3D POPULATION STRUCTURES 8

Figure 6: The lattice with all points and edges drawn and the additional
edges defining the polygons used in the volume approximation measure.
Note that the triangles measure the area between children, while the quad-
rangle captures the area between neighbouring cousins (children from dif-
ferent parents at the same depth).

Figure 7: A structure with polygons drawn in. The measure of volume used
in this paper approximates the height of the polygons to the be the average
of the height of the corners.

4 COMPARING 3D POPULATION STRUCTURES 9

AM =70815.8

Figure 8: Two structures and their corresponding area (AM) and volume
(VM) measures. The right structure contains many ‘gaps’ caused by the
presence of many sparse trees in the population. The distinction is uncovered
by the VM measure and gives more value to the left structure which is fuller
and samples the population at depths near the root more.

This volume approximation, V M, gives more information and a different
ordering among structures than our previous measure. The main benefit
is that its emphasises the importance of the entire structure being evenly
balanced, rather than just particular subtrees, as the space between parents
and children and similar depths is considered. An example if found in Figure
8, where the two populations of trees which are quite full. The value of each
measure AM and VM is shown.

Note that the left population has a smaller AM value but higher VM
value. This population samples nodes closer to the root much more evenly
than the right population. In fact, the right population has a characteris-
tic that is quite deceptive: This population samples nodes more at deeper
depths, but does not sample evenly from all possible subtrees at higher
depths (the importance of this is discussed in the Section 5). Obviously,
there are other possibilities to find an approximate volume for these struc-
tures.

The fact that we can easily change the distances and scaling in the lattice
to give more importance to different depths makes this proposed measure
ideal as it represents the visualisation. The key elements of the visualisation
are: representing the structure of a population of trees compactly, repre-
senting the relationship between parents and children and the relationship

5 REMARKS 10

between nodes at the same depths. The measure based on volume approxi-
mation captures these elements by finding the heights of the polygons which
represent the parent-child relationship and the relationship between neigh-
boring nodes at the same depth. This provides an accurate measure with
respect to the three dimensional structure represented in our visualisations.
Lastly, the volume measure could be improved by a more exact measure of
the volume of the polygon towers.

5 Remarks

The motivation of this paper comes from the machine learning field of evo-
lutionary algorithms. Here, we are interested in evolving a population of
possible solutions to a specified problem. The subfield of evolutionary al-
gorithms in which we are focusing on is genetic programming, which uses
a parse tree for representing its possible solutions to problems. Parse trees
are easily represented as rooted labeled trees, were internal nodes represent
functions in a programming language and leaf nodes represent inputs to
those functions, all defined over a specific problem.

In genetic programming, the algorithm must search over the space of
all possible structures, rooted labeled trees, and contents, which functions
and terminals to use at node positions. Thus, the ability of populations of
trees to represent different types of structure is critical, particularly in more
advanced topics within the research field.

It was our interest to develop a method to represent populations of these
structure compactly and a measure to compare them. Thus, the publica-
tion [1] which describes the original lattice visualisation fit perfectly into
our ongoing work. This representation does give much more importance in
the visualisation to the root portions of trees, and the bias is useful for de-
veloping measures to compare structures as many operators and problems
in genetic programming are affected by depth and sampling differently at
different depths.

References

[1] J.M. Daida. Limits to expression in genetic programming: Lattice-
aggregate modeling. In D.B. Fogel et al., editors, Proceedings of the 2002
Congress on FEwvolutionary Computation, pages 273-278. IEEE Press,
2002.

