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Abstract. This paper presents a survey and comparison of significant
diversity measures in the genetic programming literature. This study
builds on previous work by the authors to gain a deeper understanding
of the conditions under which genetic programming evolution is success-
ful. Three benchmark problems (Artificial Ant, Symbolic Regression and
Even-5-Parity) are used to illustrate different diversity measures and to
analyse their correlation with performance. Results show that measures
of population diversity based on edit distances and phenotypic diversity
suggest that successful evolution occurs when populations converge to a
similar structure but with high fitness diversity.

1 Introduction

Maintaining population diversity in genetic programming is cited as crucial in
preventing premature convergence and stagnation in local optima [1][2][3][4] [5].
Diversity describes the amount of variety in the population defined by the ge-
netic programming individuals structure or their performance. The number of
different fitness values (phenotypes)[6], different structural individuals (geno-
types)[7], edit distances between individuals[3] [8], and complex and composite
measures[9] [10] [11] are used as measures of diversity.

In this paper, we examine previous uses and meanings of diversity, compare
these different measures on three benchmark problems and extend our original
study [12] with additional experiments, new analysis and new measures. Pop-
ulation diversity is related to almost every aspect of program evolution and
extending the research in [12] will lead to a deeper understanding of evolution in
genetic programming. As far as the authors are aware, all the significant diversity
measures that occur in the genetic programming literature are reported.

2 Diversity Measures

Measures of diversity attempt to quantify the variety in a population and some
methods attempt to control or promote diversity during evolution. The follow-
ing section surveys both measures that provide a quantification of population
diversity and methods used to actively promote and maintain diversity within
genetic programming.



2.1 Population Measures

A common type of diversity measure is that of structural differences between
programs. Koza [13] used the term wariety to indicate the number of different
genotypes populations contained. Landgon [7] argues that genotypic diversity is a
sufficient upper bound of population diversity as a decrease in unique genotypes
must also mean a decrease in unique fitness values.

Keijzer[10] measures program variety as a ratio of the number of unique in-
dividuals over population size and subtree variety as the ratio of unique subtrees
over total subtrees. Tackett[14] also measures structural diversity using subtress
and schemata frequencies. D’haeseleer and Bluming [11] define behavior and fre-
quency signatures for each individual based on fitness and gene frequencies, re-
spectively. The correlation between individuals’ respective signatures represents
the phenotypical and genotypical diversity.

When tree representations of genetic programs are considered as graphs, indi-
viduals can be compared for isomorphism[5] to obtain a more accurate measure
of diversity. Determining graph isomorphism is computationally expensive for
an entire population and not straightforward for genetic programs. However,
counting the number of nodes, terminals, functions and other properties can be
used to determine whether trees are possible isomorphs of each other.

McPhee and Hopper [1] investigate diversity at the genetic level by tagging
each node created in the initial generation. Root parents, the parents whose tree
has a portion of another individual’s subtree swapped into it during crossover,
are also tracked. McPhee and Hopper found that the number of unique tags
dramatically falls after initial generations and, by tracking the root parents, after
an average of 16 generations, all further individuals have the same common root
ancestor.

Phenotypic measures compare the number of unique fitness values in a popu-
lation. When the genetic programming search is compared to traversing a fitness
landscape, this measure provides an intuitive way to think of how much the pop-
ulation covers that landscape. Other measures could be created by using fitness
values of a population, as done by Rosca [5] with entropy and free energy. En-
tropy here represents the amount of disorder of the population, where an increase
in entropy represents an increase in diversity.

2.2 Promoting Diversity

Several measures and methods have been used to promote diversity by measuring
the difference between individuals. These methods typically use a non-standard
selection, mating, or replacement strategy to bolster diversity. Common meth-
ods are neighborhoods, islands, niches, and crowding and sharing from genetic
algorithms.

Eschelman and Schaffer [15] use Hamming distances to select individuals
for recombination and replacement to improve over hill-climbing-type selection
strategies for genetic algorithms. Ryan’s [2] “Pygmie” algorithm builds two lists
based on fitness and length to facilitate selection for reproduction. The algorithm



maintains more diversity, prevents premature convergence and uses simple mea-
sures to promote diversity. De Jong et al [8] use multiobjective optimisation to
promote diversity and concentrate on non-dominated individuals according to a
3-tuple of <fitness, size, diversity>. Diversity is the average square distance to
other members of the population, using a specialised measure of edit distance
between nodes. This multiobjective method promotes smaller and more diverse
trees.

McKay [4] applies the traditional fitness sharing concept from Deb and Gold-
berg [16] to test its feasibility in genetic programming. Diversity is the number
of fitness cases found, and the sharing concept assigns a fitness based on an
individual’s performance divided by the number of other individuals with the
same performance. McKay also studies negative correlation and a root quartic
negative correlation in [9] to preserve diversity. Ekart and Németh [3] apply fit-
ness sharing with a novel tree distance definition and suggest that it may be
an efficient measure of structural diversity. Bersano-Begey [17] track how many
individuals solve which fitness cases and a pressure is added to individuals to
promote the discovery of different or less popular solutions.

3 Experiment Design

Our initial study of population diversity measures [12] highlighted that phe-
notypic measures appeared to better correlate with better fitness. Runs which
had better fitness in the last generation also tended to have higher phenotypic
diversity measures. This appears to go against conventional wisdom in genetic
programming which says that runs must converge to an “exploitation” phase
where diversity is lost to focus on better individuals. However, it does agree
with the intuitive idea that proper evolution needs diversity to be effective.

In this study we extend our original analysis [12] with new experiments and
new measures of population diversity which we have adapted from diversity
promoting methods. In analysing results, we measure the Spearman correlation
[18] between diversity and fitness and examine standard deviations, minimum
and maximum values and the diversity of all populations in every run and the
best fitness of those populations.

Three common problems are used with common parameter values from pre-
vious studies. For all problems, a population size of 500 individuals, a maximum
depth of 10 for each individual, a maximum depth of 4 for the tree genera-
tion half-n-half algorithm, standard tree crossover and internal node selection
probability of 0.9 for crossover is used. Additionally, each run consists of 51
generations, or until the ideal fitness is found.

The Artificial Ant, Symbolic Regression and Even-5-Parity problems are
used. All three problems are typical to genetic programming and can be found in
many studies, including [13]. The artificial ant problem attempts to find the best
strategy for picking up pellets along a trail in a grid. The fitness for this problem
is measured as the number of pellets missed. The regression problem attempts
to fit a curve for the function z* + 23 + 22 + 2. Fitness here is determined by



summing the squared difference for each point along the objective function and
the function produced by the individual. The even-5-parity problem takes an
input of a random string of 0’s and 1’s and outputs whether there are an even
number of 1’s. The even-5-parity fitness is the number of wrong guesses for the
25 combinations of 5-bit length strings. All problems have an ideal fitness of low
values (0=best fitness).

To produce a variety of run performances, where we consider the best fitness
in the last generation, we designed three different experiments, carried out 50
times, for each problem. The first experiment, random, performs 50 independent
runs. The experiment stepped-recombination does 50 runs with the same random
number seed, where each run uses an increasing probability for reproduction
and decreasing probability for crossover. Initially, probability for crossover is
1.0, and this is decreased by 0.02 each time (skipping value 0.98) to allow for
exactly 50 runs and ending with reproduction probability of 1.0 and crossover
probability 0.0. The last experiment, stepped-tournament, is similar but we begin
with a tournament size of 1 and increment this by 1 for each run, until we reach
a tournament size of 50. In the random and stepped-tournament experiments,
crossover probability is set to 1.0 and the tournament size in random and stepped-
recombination is 7. The Evolutionary Computation in Java (ECJ), version 7.0,
[19] is used, where each problem is available in the distribution.

The following measures of diversity were introduced previously and are briefly
described as they are collected for each generation in every run. Genotype and
phenotype diversity count the number of unique trees for the genotype measure
[7] and the number of unique fitness values in a population represents the pheno-
type measure [6]. The entropy measure is calculated for the population as in [5],
where “py, is the proportion of the population P occupied by population partition
k”, — >k Pk - logpr . A partition is assumed to be each possible different fitness
value, but could be defined to include a subset of values. Pseudo-isomorphs
are found by defining a 3-tuple of <terminals,nonterminals,depth> for each indi-
vidual and the number of unique 3-tuples in each population is the measure. Two
identical 3-tuples represent trees which could be isomorphic. Edit distance 1
and 2 is the edit distance between individuals used by de Jong et al [8] (referred
to as “ed 17 in the graphs) and an adapted version of Ekdrt and Németh [3]
(“ed 2”). Every individual in the population is measured against the best fit in-
dividual. This measure is then divided by the population size. The first measure
(ed 1) is a standard edit distance measure where two trees are overlapped at
the root node. Two different nodes, when overlapping, score a distance of 1 and
equal nodes get 0. The edit distance is then the sum of all different nodes and
normalised by dividing it by the size of the smaller tree. The second measure (ed
2) is slightly adapted back to its original formulation in [20] where the difference
between any two nodes is 1. The difference between two trees is then (defined in

[3]):

dist(Ty, Ty) = d(p,q)  if neither 71 nor T, have any children
DI dp,q) + 5+ XLy dist(si,ti)  otherwise



Where Ty, T, are trees with roots p, ¢ and possible children (m total) sub-
trees s,t. Two trees are brought to the same tree structure by adding “null”
nodes to each tree. Note that the differences near the root have more weight,
a possibly convenient description for genetic programming as it has been noted
that programs converge quickly to a fixed root portion [1].

N 2

The Spearman correlation coefficient is computed as [18] 1— %%}Vdi. Where
N is the number of items (50 runs), and d; is the distance between each run’s
rank of performance and rank of diversity in the last generation. A value of -1.0
represents negative correlation, 0.0 is no correlation and 1.0 is positive correla-
tion. For our measures, if we see ideal low fitness values, which will be ranked in
ascending order (1=best,...,50=worst) and high diversity, ranked where (1=low-
est diversity and 50=highest diversity), then the correlation coefficient should be
strongly negative. Alternatively, a positive correlation indicates that either bad
fitness accompanies high diversity or good fitness accompanies low diversity.

4 Results

Graphs of the 50 runs for all three experiments and all three problems were ex-
amined, along with minimum, maximum and standard deviations of best fitness
and population diversity measures. Also, the Spearman correlation coefficient
was calculated, correlating the diversity measures with best fitness across each
set of 50 runs. This study involved 450 runs of 51 generations each, adding to
a previous study [12] of the same size with different random seeds and different
measures of diversity. While all three problems showed the same general trends,
we focus on the artificial ant and even-5-parity.

Figure 1 shows for the artificial ant problem and random experiment, that
diversity measures and fitness varied widely. The most dramatic activity occurs
early with runs being similar until around generation 10, where they become
quite varied. However, from Table 1 we can see several interesting phenomenon.
First, by noting the genotype measure and best fitness standard deviations for
the artificial ant experiment, we see little variance of best fitness (11.2,15.4,15.9)
but large variance of genotype diversity (18.3,120.1,44.2). Also note that the
genotype diversity for the random experiment in artificial ant and even-5-parity
have very high minimum and maximum values, where the other measures mini-
mum and maximum does not differ across experiments. This information leads
us to believe that the genotype diversity measure does not suggest a strong
correlation with varying run performance. Note how the other measures have
consistent variation, as does fitness.

Using the Spearman correlation coefficient we investigated whether runs that
produced good fitness had low/high diversity, where ties in ranks were solved
by splitting the rank among the tying items (add possible ranks and average).
Remembering that negative correlation (values close to -1.0) suggest high diver-
sity is correlated with good performance (as we want to minimize fitness). Table
1 shows that high negative correlation is seen most consistently with entropy
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Fig. 1. 50 runs of best fitness per generation for the artificial ant random experiment
and a graph for each of the diversity measures of entropy, phenotype and genotype
diversity.

and phenotype diversity. In fact, only these two measure always produce nega-
tive correlation, indicating that a high phenotype variance and entropy values
accompany the best fit runs.

Figure 2 shows graphs for the same problem where every populations’ best
fitness and edit distance diversity measure are plotted. The artificial ant and
even-5-parity graphs shown here demonstrate a very interesting phenomenon.
Notice that best fitness values (close to 0) also consistently have low edit distance
diversity, meaning that for populations containing the best fit individuals, those
populations are similar to the best fit individual. The even-5-parity problem
indicates that best fitness only occurs in populations that have low edit distance
diversity. The artificial ant problem shows that poor fitness tends to occur in
populations with higher edit distance diversity and also better populations have
low edit distance diversity.

While the phenotypic measures seem to indicate that better performance is
accompanied with higher diversity, the edit distance diversity results appear to
contradict that by suggesting that better performance is in populations with low
edit distance diversity. In fact, these results indicate something quite interesting,
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Table 1. Problems artificial ant and even-5-parity with experiments random (rand),
stepped-tournament (step-t) and stepped-recombination (step-r). Values are from the
final population. Best fitness (“b.fit”) is the best fitness in the final generation. The
Spearman coefficient shows perfect correlation with 1.0, negative correlation with -1.0
and no correlation with 0.0. Bold numbers are mentioned in the text and negative
correlation indicates that best fitness is correlated with high diversity measure values.

artificial ant problem

spearman min max standard dev
random| step-t | step-r random step-t step-r random | step-t | step-r
b.fit - - - 0.0 39.0 0.0 50.0 0.0 73.0 | 11.221 | 15.378 (15.944

gene | 0.2673 |-0.0533 | 0.5110 |402.0|491.0| 1.0 |476.0 | 271.0 | 487.0 | 18.339 |120.109|44.238
isom | 0.4135 | 0.0874 | 0.5816 | 75.0 [339.0| 1.0 |291.0| 67.0 | 354.0 | 66.0767 | 74.3093 |63.1815

phene(-0.2214|-0.2029|-0.0079| 24.0 | 57.0 1.0 54.0 | 13.0 | 62.0 | 8.2239 | 9.4150 |7.3103
entro | -0.358 | -0.597 (-0.4506(0.4829(1.3339| 0.0 |1.2927|0.6010{1.3498| 0.1939 | 0.2584 | 0.1958

edl -0.0128 | -0.4799 | -0.1646 (0.0876|0.5082| 0.0 |0.3746(0.0558|0.8245| 0.0890 | 0.0824 | 0.1110
ed2 0.2874 | -0.4196 | -0.0606 |0.4864|7.0751| 0.0 |3.5343(0.5201|6.0184| 1.3466 | 0.7675 | 1.0564

even-5-parity problem

spearman min max standard dev
random| step-t | step-r random step-t step-r random | step-t | step-r
b.fit - - - 3.0 12.0 4.0 15.0 3.0 15.0 | 1.8762 | 2.2670 |2.7734

gene | 0.1788 |-0.3165 | 0.3295 |412.0(482.0| 9.0 |470.0|269.0 | 484.0 (14.0285|103.544|38.224
isom | 0.2388 | 0.2221 | 0.3500 | 45.0 | 89.0 1.0 [119.0 | 23.0 | 123.0 |10.0312 | 19.2771 |20.2564

phene(-0.7326|-0.7796|-0.8494| 6.0 16.0 1.0 15.0 3.0 15.0 | 1.8999 | 2.3756 | 2.3427
entro [-0.6978|-0.7317| -0.763 |0.5431|0.9444| 0.0 |0.8996|0.0176]|0.8829| 0.08168 | 0.1840 | 0.1439

edl 0.5628 | 0.4044 | 0.5853 |0.0737(0.3664|0.0426(0.7840|0.0520(0.8484| 0.0644 | 0.1296 | 0.1286
ed2 0.3806 | 0.3344 | 0.4738 |0.3917|2.5040(0.1786| 5.277 [0.2846|3.4607| 0.4327 | 0.8776 | 0.7364

that genetic programming is most successful when populations converge to a
similar structure but in a manner which preserves diversity.

Figure 3 demonstrates that when the Spearman correlation is calculated for
every population during evolution (150 runs total for each problem) how the
different diversity measures correlate with performance during evolution. For
the different problems some diversity measures correlate better at different times
during evolution. Notice the early random behaviour around generations 5-10,
the same time of divergence in the graphs in Figure 1 and also the general point
of convergence of root ancestors, described in [12] [1].

5 Conclusions

The measures of diversity surveyed and studied here indicate that genotype
diversity may not be useful for capturing the dynamics of a population, because
of the low correlation. This is also suggested in [2][10]. The fitness based measures
of phenotypes and entropy appear to correlate better with run performance.
The measures of edit distance diversity, one being a traditional edit distance
and the other giving more weight to differences near the root, seem to provide
useful information about populations with good/poor performance. Better fit
individuals come from populations with low edit distance diversity, meaning that
the population is similar to the best fit individual. This information accompanied
with our previous results seem to suggest that populations converge to a similar
structure but keep high diversity.
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Fig. 2. The best fitness per population is plotted (x axis) against that population’s
edit distance diversity (edl, ed2). Here, low fitness is better for both the artificial ant
and even-5-parity problems.

Moreover, if we consider the curves for edit distance diversity (edl, ed2)
together with those for phenotype diversity (phenes, entropy) in Figure 3, during
most of evolution edit distance diversity correlates positively and phenotype
diversity negatively with high fitness. These results taken together show that
the fitness landscapes defined by the genetic operators chosen and the fitness
function used for the problems studied are uncorrelated, i.e., individuals with
low edit distance have very different phenotype characteristics (e.g. fitness). This
in turn suggests that the search capabilities of the algorithms studied in this
paper might be impaired.

While the edit distance measures are expensive, if they prove useful in pre-
dicting successful runs we could attempt to find accurate approximations or limit
their use to defined generational intervals. Finally, results showed that evolving
populations have diversity values which fluctuate between positive and negative
correlation with best fitness and this behaviour varied among the studied prob-
lems. This paper also indicates the need to carefully define diversity measures
and the goal of those measures (high or low values) when using diversity to assess
or alter genetic programming evolution.
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Fig. 3. For each problem, the Spearman correlation between a populations diversity
and best fitness is calculated across all runs. Note the fluctuations between negative,
no and positive correlation as the populations change during evolution.

6 Future Work

Current research includes studying new problems, tracking root ancestors and
other measures during evolution, and applying methods to promote diversity
while using different measures to determine their effects. Fitness landscape dis-
tance correlation is also being investigated.
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