Ramped Half-n-Half Initialisation Bias in GP

Edmund Burke, Steven Gustafson®, and Graham Kendall

School of Computer Science & IT
University of Nottingham
{ekb|smg|gxk}@cs.nott.ac.uk
(* corresponding author)

Tree initialisation techniques for genetic programming (GP) are examined
in [4, 3], highlighting a bias in the standard implementation of the initialisation
method Ramped Half-n-Half (RHH) [1]. GP trees typically evolve to random
shapes, even when populations were initially full or minimal trees [2]. In canonical
GP, unbalanced and sparse trees increase the probability that bigger subtrees
are selected for recombination, ensuring code growth occurs faster and that
subtree crossover will have more difficultly in producing trees within specified
depth limits. The ability to evolve tree shapes which allow more legal crossover
operations, by providing more possible crossover points (by being bushier), and
control code growth is critical. The GP community often uses RHH [4]. The
standard implementation of the RHH method selects either the grow or full
method with 0.5 probability to produce a tree. If the tree is already in the initial
population it is discarded and another is created by grow or full. As duplicates
are typically not allowed, this standard implementation of RHH favours full over
grow and possibly biases the evolutionary process.

The full and grow methods are similar algorithms for recursively produc-
ing GP trees. The full algorithm makes trees with branches extending to the
maximum initial depth. The grow algorithm does not require this and allows
branches of varying length (up to the maximum initial depth). As many more
unique trees exist which are full (as full trees contain more nodes), there is a
tendency, especially with particular function and terminal sets, to produce more
duplicate trees with the grow method.

To estimate the bias of the RHH method with a particular function and ter-
minal set, we use the results from Luke [3] (Lemma 1). The expected number of
nodes E; at depth d is defined as: E; = {1 if d = 0,else E;_1pb if d > 0} where
pb is the expected number of children of a new node (p is the probability of
picking a nonterminal, and b is the expected number of children of a nontermi-
nal). Luke [3] uses this to calculate the expected size of trees in the infinite case.
Here we bound the calculation to depth d = 4. For our analysis, E; correctly
predicted the full method would contribute more trees to the initial population
whenever the expected size of the two methods was not similar (i.e. grow made
smaller trees, causing more duplicates and rejected trees).

Canonical GP trees grow in size to maximum depth limits, making the initial
trees seeds for the evolutionary process. As the full algorithm is more likely to
evolve larger and more bushier trees with more nodes than the grow method, we
conduct an experimental study to observe these differences in the evolutionary
process on standard problems. We use RHH and the full and grow methods

exclusively. Initial depths of 4 and 6, with maximum tree depths of 10 and 15,
respectively, a population size of 500, a total of 51 generations, and standard
subtree crossover is used for recombination on the artificial ant, even-5-parity,
and symbolic regression problem with the quartic polynomial. 50 random runs
were performed for each of the 6 experiments for each problem.

On the ant problem, GP produced the best fitness with smaller initial trees
(smaller initial depth or those produced by the grow method). Initial trees in
the ant problem are particularly important as they encode the initial path that
the ant takes. The parity problem experiments produced better fitness with
bigger and more fuller trees; the populations created only by grow had the
worst fitness, followed by the smaller depth limit populations. The RHH method
causes 70% of the initial ant and parity population to be created by the full
method, a negative bias for the ant problem and a positive bias for the parity
problem. The regression problem always produced trees which were sparse due to
the number of unary functions in the regression function set (log, exp, sin, cos),
which is typical in function sets for more complex regression problems. While
the RHH method was not overly biased (full produced 55% of initial trees in
the RHH experiments and full and grow had similar fitness), the sparseness
and unbalancedness of trees caused a significant loss of genotypic diversity (the
number of unique trees).

The bias of the RHH method can be positive or negative, but it can also
effect diversity. A loss of genotypic diversity can result from two factors here:
the creation of trees by crossover already in the population, or the failure of
crossover to find acceptable crossover points (leading to the duplication of one of
the parents). The ant and parity populations produced with grow were sparser,
more unbalanced and lost diversity. All the regression populations had similar
behaviour due to the function set.

A disadvantage exists for GP trees which are unable to grow effectively.
GP trees which grow sparse and unbalanced will cause more code growth, less
genotypic diversity, and search a smaller space of possible programs. These pop-
ulations will be less effective in the evolutionary process. Current research is
investigating various ways to adapt and detect program shapes for improved
performance of fitness and recombination operators.

References

1. J.R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

2. W. Langdon, T. Soule, R. Poli, and J.A. Foster. The evolution of size and shape.
In Lee Spector et al., editors, Advances in Genetic Programming 8, chapter 8, pages
163-190. MIT Press, Cambridge, MA, USA, June 1999.

3. S. Luke. Two fast tree-creation algorithms for genetic programming. IEEE Trans-
actions on Evolutionary Computation, 4(3):274-283, September 2000.

4. S. Luke and L. Panait. A survey and comparison of tree generation algorithms. In
L. Spector et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference, pages 81-88, San Francisco, USA, 7-11 July 2001. Morgan Kaufmann.

