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Abstract. We present an alternative to standard genetic programming
(GP) that applies layered learning techniques to decompose a problem.
GP is applied to subproblems sequentially, where the population in the
last generation of a subproblem is used as the initial population of the
next subproblem. This method is applied to evolve agents to play keep-
away soccer, a subproblem of robotic soccer that requires cooperation
among multiple agents in a dynnamic environment. The layered learning
paradigm allows GP to evolve better solutions faster than standard GP.
Results show that the layered learning GP outperforms standard GP by
evolving a lower fitness faster and an overall better fitness. Results indi-
cate a wide area of future research with layered learning in GP.

1 Introduction

For complex problems, such as robotic soccer [5][11], genetic programming (GP)
may not be capable of finding a solution in its standard form. One reason is that
the GP search space grows so large that it effectively leads to an intractable
problem [17]. GP was previously used for robotic soccer to evolve teams of agents,
but modifications were usually made to simplify the problem. Luke used GP to
evolve high-level team strategies in [9], and Andre and Teller developed a fitness
function based on human coaching principles of soccer in [1]. In a multiagent
system (MAS) such as soccer, there is a definite hierarchy of behaviors that can
be observed from human soccer. GP produces hierarchical programs by evolving
and using automatically defined functions (ADF).

Koza gives a good description of ADFs and hierarchical programs in [7].
Hierarchical programs are evolved using ADFs to allow for code structure and
code reuse. Rosca and Ballard, in [12], discuss ADFs and their importance in
hierarchical programs. Although ADFs allow for the GP individuals to reuse
evolved subprograms and develop solutions that have hierarchical code structure,
they do not explicitly allow for hierarchical learning to take place. The distinction
is that hierarchical learning describes a way in which behaviors are learned, not



necessarily in how the code that represents them is structured. While code reuse
and program structure may help to overcome the inherent complexity of MAS
problems, we suggest an approach for learning cooperative behaviors in a team-
based MAS that is based upon primitive team objectives.

In many cases, teamwork can be made more tractable to learning, both in
efficiency and in robustness of the performance element through a logical decom-
position of the main problem [18]. For example, in the robotic soccer domain
Stone and Veloso in [13] produce a very effective team of agents playing soccer
by learning the overall task in a hierarchical manner. Tasks such as passing and
kicking were learned before overall team strategies were learned. This technique
of learning in layers is called layered learning and is formally described in [14]. Tt
was applied with reinforcement learning for robotic soccer and the results indi-
cated that layered learning may be a good adaptation for other machine learning
methods such as GP.

To investigate layered learning in GP, the problem of learning keep-away
soccer is chosen for its similarities to soccer and its properties of being a MAS
problem. Also, keep-away soccer presents GP with a more reasonable search
space than the full soccer problem and should allow for standard GP to find a
solution so that comparisons can be made with the hybrid method of layered
learning in GP.

Figure 1 is a screen capture of the visualization program used for the sim-
ulator built for keep-away soccer. The figure depicts the three offensive agents
passing the ball in a counterclockwise motion (agent 3 passes the ball twice),
with the trail of the ball denoted by the ’-’ character. The ”*”, ”+” and ”;”
show the paths of other agents. The visualization was run for about 30 timesteps
to collect the screen capture.

Fig. 1. Screen capture of simulator. 1,2, and 3 are offensive agents. 4 is the defender,
and 5 is the ball. Ball moves from 3 to 1, 1 to 2, 2 to 3, and back towards 1.

Several variations exist for MAS and keep-away soccer can be categorized
as multiagent learning with homogenous, noncommunicating agents [16]. This
type of MAS problem requires robust solutions and is an interesting problem for
research. A natural way to reduce complex, MAS problems, such as keep-away
soccer, could prove to be useful for other MAS problems.



The keep-away soccer problem is described in Section 2, followed by a more
detailed analysis of the application of layered learning to GP in Section 3. Section
4 describes experiments using an abstracted version of the TeamBots and Soc-
cerServer robotic soccer simulator. Results are in Section 5 and research findings,
conlusions, and future work follow.

2 Keep-Away Soccer

The RoboCup competition is an excellent testbed for MAS and are of inter-
est to a wide variety of MAS research areas [4][3][19]. RoboCup competition
occurs with real robots and in a simulation league, which presents several inter-
esting challenges for researchers. Reinforcement learning, hierarchical sensing,
neural networks, genetic programming, and a variety of hybrid combinations
have been previously applied to the RoboCup simulation league [15][18] and real
robot leagues. However, hand-coded and hybrid learning still outperform purely
learned agent strategies. This poses a continuing challenge to researchers.

In keep-away soccer three offensive agents are located on a rectangular field
with a ball and a defensive agent. The defensive agent is twice as fast moving
as the offensive agents, and the ball can move, when passed, twice the speed of
the defensive agent. This is similar to the predator-prey problem in [10] where
more than one agent is required to solve the problem. The problem in keep-away
soccer is to minimize the number of times the ball is turned over to the defender.
A turnover occurs every time step that the defender is within one grid unit of
the ball. Thus, the objective for offensive agents is to continously move and pass
the ball to other offensive agents to keep the ball away from the defender and
minimize turnovers.

Soccer, whether analyzing it as a human game or robotic game, can be broken
down into subproblems of optimizing skills like ball control, passing, and moving.
Keep-away soccer can be decomposed in the same manner. For the experiments
here, we think of keep-away soccer as two layers of behaviors: passing accurately
to other offensive agents with no defender agent present, and moving and passing
with a defender to minimize the number of turnovers that occur in a game. The
two layers of behaviors come from a human-like view of learning soccer, but are
not heavily dependent on domain knowledge. These two types of behaviors are
important to play good keep-away soccer, but these behaviors are not necessarily
ways to measure the effectiveness of a team of agents who have just played keep-
away soccer, which would be useful for finding a fitness function.

The layered learning application to GP is presented next, as we explain why
keep-away soccer is a good test bed that illustrates its benefits.

3 Layered Learning

Applying the layered learning paradigm to a problem consists of breaking that
problem into a bottom-up hierarchy of subproblems. When the subproblems are
solved in order, where each previous subproblem’s solution leads to the next



subproblem’s solution, the original problem is eventually solved. This type of
hierarchical solution is different than the hierarchical solution ADFs propose to
find, which focus on code reuse and structure, not on how subtasks are learned.

Problems that attempt to simulate human behaviors, such as robotic soccer
and keep-away soccer, lend themselves well to a bottom-up decomposition. The
reason for this is because human learning usually occurs in a bottom-up fashion
of first learning the smaller tasks needed to solve a larger task. In fact, when
the problem is of this type and we are already using a biologically motivated
method like GP, it seems very natural to use a bottom-up decomposition of the
problem that simulates human learning and allows GP to learn each one of the
smaller problems.

Table 1 is a modified version of the table found in [14]. Each key principle
of layered learning is correlated with a property of genetic programming for
keep-away soccer showing why the application of layered learning is natural and
possibly beneficial to this type of problem and solution.

Table 1. Key principles of layered learning and the GP keep-away soccer correlation.

|Layered Learning Genetic Programming
1. Learning from raw input = MAS problems for GP
is not tractable are complex problems
2. A bottom-up decomposition = Human-like learning problems have
is given a natural bottom-up decomposition
3. Learning occurs independantly = GP applied to each layer
at each level is independent
4. The output of one layer feeds = The population in the last generation
the next layer’s input of one layer is the next layer’s

initial population

When we modify standard GP for layered learning, we need to decide what
the learning objective at each layer is, i.e., the fitness at each layer that drives the
search for ideal individuals. As seen in [9], using a single-objective fitness value
often leads to the best performance, and is much easier than trying to define
multi-objective fitness functions. While multiobjective fitness functions should
allow GP to evolve more complex behaviors, it becomes difficult to decide what
the multiobjective fitness should be and how important each fitness is to the
solution. If one fitness is clearly more important than another, it is necessary to
decide to what proportion that fitness is more important. While using a multi-
objective fitness is a possibility, using a singule-objective fitness seems logical for
layers of a layered learning system that represents a decomposition of a larger
problem.

The last issue to address for layered learning in GP is that of transferring the
population of the last generation of the previous layer to the initial population
of the next generation. Because the ideal team will consist of individuals with



high fitness on the coordinated MAS task, and in every population there are
certain individuals that have a better fitness than others, we might want to
copy that best individual many times to fill the initial population of the next
layer. However, this duplication removes the diversity that was evolved from
the previous layer, which seems counterintuitive, because the best individual
may only be a suboptimal solution. Therefore, we propose two experiments with
layered learning GP, one that duplicates the best individual and one that simply
copies the entire population.

4 Experiments

Four initial experiments were chosen to investigate the performance of layered
learning GP, standard GP (SGP), GP with ADFs (ADFGP), layered learning
GP with the best individual duplicated to fill initial populations (LL1GP),
and layered learning GP with the entire last population copied for the next
initial population (LL2GP). SGP and ADFGP use the single fitness function of
minimizing the number of turnovers that occur in a simulation. ADFGP allows
each tree for kicking and moving to each have two additional trees that represent
ADFs, where the first ADF can call the second ADF, and both have access to
the full function set, as in SGP. LL1GP and LL2GP both have two layers, the
first layer’s fitness function is to maximize the number of accurate passes, and
the second layer’s fitness function is to minimize the number of turnovers.

Six variations of each experiment were developed that use standard GP pa-
rameter settings as described in [7] and vary the maximum generations allowed
per run and the population size. Maximum generation values are 51 and 101,
and population sizes of 1000, 2000, and 4000 are used. Six different runs are done
for each type of experiment, SPG, ADFGP, LLIGP and LL2GP. The stopping
criterion of each run is when an ideal fitness is found, a fitness equal to 0 or the
maximum generation is reached. The genetic operators crossover and reproduc-
tion create 90 and 10 percent of the next generation, respectively. Tournament
selection is used of size 7 with maximum depth 17. Table 2 summarizes the func-
tion set used and is similar to function sets used in [9] and [1]. Terminals are
vectors, egocentric, or relative, to the agent whose tree is being evaluated, and
all functions operate on and return vectors.

The GP system used was developed by Luke and is called Evolutionary
Computation in Java [8] (ECJ). The simulator designed for keep-away soccer
abstracts some of the low-level details of agents playing soccer from the Team-
Bots [20] environment, which abstracts low-level details from the SoccerServer
[2]. Abstractions of this type would allow the keep-away soccer simulator to be
incorporated later to learn strategies for the TeamBots environment and the
SoccerServer.

In the SoccerServer and TeamBots, players push the ball to maintain pos-
session. To kick the ball, the player needs to be within a certain distance. For
keep-away soccer, we eleminate the need for low-level ball possession skills and al-
low offensive agents to have possession of the ball. Once an agent has possession,



possession is only lost when the ball is kicked, according to the evaluation of the
agent’s kick tree. Because we used vectors that have direction and magnitude,
this implementation would allow for dribbling actions to be learned where the
agent simply passes the ball a few units away. This abstraction greatly simplifies
the problem and still allows for a wide range of behaviors to be learned.

At each simulation step that allow agents to act, if the agent has possession
of the ball (i.e. the agent is on top of the ball in the grid) the agent’s kick tree is
evaluated. The kick tree evaluates to a vector that gives direction and distance
to kick the ball. Otherwise, the agent’s move tree is evaluated. Table 2 gives the
terminals, functions, and their description.

For layered learning experiments, 40 percent of the maximum number of
generations are spent in layer 1 learning accurate passing without a defender
present. To evaluate accurate passes, we count the number of passes which are
passed to a location that is within 3 grid units of another agent. The fitness is
then 200 — passes, 200 timesteps in a simulation and a fitness of 0 is best and
200 the worst. The remaining 60 percent of generations are spent in layer 2 with
a fitness value based on the number of turnovers that occur with a defender
present. The defender uses a hand coded stratey and always moves towards to
the ball to cause a turnover.

Table 2. Keep-away soccer terminal (egocentric vectors) and function set

[terminals||functions(args) | Description |

defender ||rotate90(1) rotate current vector 90 degrees counter-clockwise
matel random(1) new random magnitude between 0 and current value
mate2 negate(1) negate vector magnitude
ball div2(1) divide vector magnitude by 2

mult2(2) multiply vector magnitude by 2

vadd(2) add two vectors

vsub(2) substract two vectors

iflte(4) if vl < v2 then v3, else v4 (comparing magnitudes)

Each evaluation of an individual in the simulator takes 200 timesteps, where
the ball can move on each step, the defender moves on every other step, and all
offensive agents move together on every fourth timestep. The initial setup of the
simulation places the defender agent in the middle of a 20 by 20 unit grid. The
field is then partitioned into three sections, the top half and the bottom left and
right halves. Offensive agents are placed randomly within those sections, one in
each, and the ball is placed a few units from one of the offensive agents, chosen
at random.

Early runs of the system resulted in local optima being achieved; the most
common was all the offensive agents crowding the ball and preventing the de-
fender from causing a turnover. To overcome this, the defender, if blocked from
the ball, can move through an offensive agent without the ball by simply trading



places with the agent if the two are within one unit on the grid. Each exper-
iment was run 10 times and averages were taken across those runs. Running
on a 16-processor 400 MHz Sun Ultra-Enterprise 10000 machine, evaluation of
one generation took approximately 2 seconds for population size of 1000 and
approximately 4-8 seconds for population size of 4000.

5 Results

The simplifications made to the problem allow SGP to find keep-away soccer
agents with good fitness. For all experiments, the parameter of 101 generations
always showed the best convergence and lowest fitness. For the remainder of the
paper, we consider only that parameter setup.

ADFGP experiments converged to two clusters of fitnesses, one being better
than SGP, and the other much worse. When observations of the individual size
are accounted for, it appears that the bad cluster contains individuals with
about half the number of nodes as individuals in the good cluster. Prefiltering
ADFGP runs based on individual size may be appropriate to remedy this, but
since we are not explicity studying ADFGP, we still use the averages here as
this is only a hypothesized explanation of ADFGP. LL1GP, with duplicating the
best individual from the previous layer, did much worse than SGP and ADFGP.
LL2GP was competitive with SGP and ADFGP, remembering that the initial
40 generations are spent in layer 1 learning accurate passing.

These results do not highlight a strength or weakness of layered learning for
GP, except that we can get nearly the same solutions with LL2GP as with SGP
and ADFGP. However, when we look at the learning curve for best fitness per
generation of layer 1 in LL2GP, we notice that convergence takes place in about
15 generations and settles to the same value for the rest of the run. This hints
that perhaps we do not gain anything from running for a total of 40 generations.
Two new experiments are then developed to test this hypothesis.

New layered learning GP, nLL2GP and n2LL2GP, are exactly the same as
LL2GP, except that for nLL2GP the first layer is only run for 20 generations, and
the second is run for 81. For n2LL2GP, the first layer is run for 10 generations and
the second for 91. Figure 3 shows the learning curves for the new experiment,
n2LL2GP, with the fitness of the last generation labeled. Figure 2 shows the
same learning curves for SGP and ADFGP. We see a steeper drop in fitness
in n2LL2GP, layer 2, and a better resulting fitness. The nLL2GP experiment
showed some improvement, but not as much as n2LL2GP.

The same learning curves for mean fitness show that n2LL2GP, nLL2GP,
SGP and ADFGP all produce the same values, approximately, with n2LL2GP
being slightly better. These results suggest that a natural breakdown of the
problem into subproblems, where GP solves each of the subproblems, could allow
for a better overall fitness and a speed up in the learning over SGP. The standard
deviation of the several runs of SGP, ADFGP, nLL2GP, n2LL2GP were 4.98,
17.45, 2.73 and 2.28 respectively, showing good stability for n2LL2GP. Table 3
gives some interesting values across all experiments. Note that individual size is
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the average number of nodes, where each node represents a function, terminal,
or ADF call, of an individual in a generation. Figure 4 shows the learning curves
for best fitness per generation and best generation so far in the run, where the
n2LL2GP line only includes data for layer 2, omitting layer 1 that was attempting
to maximize accurate passing.

Table 3. Data for experiments with population size=4000, max generations=101, and
averaged over 10 runs. Good-ADFGP represents the average of the 10 best runs selected
from 20 runs of ADFGP.

SGP [ADFGP| Good |LL1GP|LL2GP[nLL2GP[n2LL2GP
ADFGP
best fit.gen.101 11.25 | 19.67 | 875 | 23.71 | 12.67 | 9.67 9.43
mean fit.gen.101 || 66.89 | 60.21 | 64.27 | 82.03 | 64.64 | 74.78 | 70.39
ave.ind.size gen.101|[228.74| 113.25 | 123.07 | 161.71 | 171.40 | 217.36 | 249.21
15% gen fit.< 20 33 62 22 101 | 55 31 26
best fit.run 9.0 | 1656 | 6.83 | 1929 | 9.0 | 7.32 5.78

Examining best-of-run individuals show the emergence of several behaviors,
moving without the ball to avoid defenders, passing to open agents, and spread-
ing out across the field, i.e. not crowding other agents or the ball. All the results
highlight several other areas of interesting and worthwhile research with layered
learning and keep-away soccer, and for other domains as well.
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Fig. 4. The ’best fitness per generation graph’ (left) compares the SGP, ADFGP and
the n2LL2GP experiments for 101 generations and a population size of 4000. Because
n2LL2GP spends the initial 10 generations learning accurate passing, only layer 2 is
shown here, the layer for reducing the number of turnovers. The ’best fitness so far in
run’ (right) compares the same experiments with the addition of the Good-ADFGP
experiment, the average of the best 10 out of 20 runs of ADFGP.



6 Conclusions

We showed that using layered learning for GP can evolve more fit individu-
als than standard GP. Additionally, layered learning GP allows for a natural
decomposition of a large problem into subproblems. Each subproblem is then
more easily solved with GP. The keep-away soccer problem is a good testbed
for abstracting away the complexities of simulated soccer and allow for different
GP methods to evolve good solutions for comparing methods. It is also an easily
extended problem to the full game of soccer and transferred across platforms to
other domains such as TeamBots and the SoccerServer from the simulator that
was written here in ECJ.

Intuitively, we can liken our success with layered learning in GP with the
success of human soccer teams. Successful teams are usually made up of players
with unique strategies, where learning took place in a bottom-up fashion. The
n2LL2GP experiment simulates this kind of behavior, where we attempt to min-
imize the number of generations needed per layer. The results indicate that it
is beneficial to learn complex behaviors in a layered learning approach with GP,
instead of standard GP, as it is easier to decide on fitness functions and natural
to decompose the overall problem.

There are several extensions to this research that would be of interest. Devel-
oping a team for RoboCup competition using layered learning in GP would be
a good way to test its ability more thoroughly. Studying other statistics about
SGP, ADFGP, and n2LL2GP experiments could lead to other interesting conclu-
sions, as would attempting to better optimize the number of generations needed
in each layer. Diversity in populations is also an interesting issue, and whether
layered learning promotes diversity. Other interesting modifications include de-
veloping heterogenous teams, adding additional lower and higher-level layers,
and allowing ADFs in layered learning.
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