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Abstract- This paper presentsan analysis of increased
diversity in geneticprogramming. A selectionstrategy
basedon geneticlineagesis usedto increasegeneticdi-

versity. A geneticlineageis definedasthe path from an

individual to individuals which were createdfr omits ge-
netic material. The method is applied to threeproblem
domains: Artificial Ant, Even-5-Parity and symbolicre-
gressionof the Binomial-3 function. Weexaminehow in-

creaseddiversity affects problemsdiffer ently and draw

conclusionsabout the types of diversity which are more
important for each problem. Resultsindicate that di-

versity in the Ant problem helpsto overcomedeception,
while elitism in combination with diversity is likely to

benefitthe Parity and regressionproblems.

1 Intr oduction

Is increasedliversity in geneticprogrammingoeneficialto
performance? The motivation behind evolutionary algo-
rithms (Darwin’s theory of natural selection)would cer
tainly suggestso. But natureis not necessarilyaboutopti-
misation,while evolutionarycomputatiorgenerallyfocuses
on optimisationproblems. A compromisein theseobjec-
tivescanbe seenin thetypical two-phasebehaiour of evo-
lutionaryalgorithms.Thefirst phaseof theprocessxplores
for goodsolutionswhile the secondphaseexploits the bet-
tersolutions.In which phasas diversitymoreimportant?A
lossof diversity during explorationwould represent poor
global search while high amountsof diversity could later
preventa thoroughexploitation phase.Both phasesappear
to require different diversity, and referring to the general
lossof diversity would seemproblematic. Additionally, in
a complex representatiosuchasgeneticprogramming,n
what senseshoulddiversity be defined: the spaceof pos-
sible parsetreesrepresentingprograms the actualamount
of differentelementsvhich defineprogramsor the fitness
valuesattachedo programs?

Our previousresearctsuggestshatthe measuresvhich
areusedto controlanddescribadiversityareoftenconflict-
ing and do not necessarilycorrelatewell with fitnessim-
provement2, 3]. To betterunderstandhe effectsdiversity
hason performancewe have useda simple methodbased
on geneticlineagedo increasehe geneticdiversity of pop-
ulations. We addno elitism, size,shapeor contentbiasto
anotherwisestandardramework. Threeproblemdomains

(f correspondinguthor)

areinvestigatecandcomparedvith previousresearcho un-
derstandvhy increasingdiversityis beneficialon somebut
notothers.

1.1 Previous Work

Oneof the mainchallengesn geneticprogrammings pre-
ventingthe systemfrom getting stuckin local optima. An
often cited causeis the loss of diversity and corvergence
within the population[15, 20, 2]. Diversity hasbeenmea-
suredas geneticvariety [12], edit distancesetweentrees
[22, 6, 5, 3], uniquesubtreeq11], initial geneticmaterial
[20], andthe entropy of a population[27]. Thesemeasures
identify differentaspect®f a populations structureandbe-
haviouralpropertiegshatmightcausecorvergenceandeven-
tualfitnessstagnationHowever, diversitymeasuresanim-
ply differentobjectvesanddonotnecessarilgorrelatewell
with fitness[2, 3].

Corvergence(the population-widdossof diversity)was
suggestedo mark the beginning of a local searchphasen
geneticprogramming[8, 26]. In typical geneticprogram-
ming systemsthe size of geneticmaterialexchangeddur-
ing recombinatiorbecomesmallerandmoreconcentrated
to similar locations. The exchangeof geneticmaterialin
theseareagepresentilocal searchasthey arelesslikely to
bedetrimentato fitnessandmodify only a smallpartof the
overall structure[10, 17, 26] (assuminga correlatedand-
scape).

The quick lossof diversity followed by smallimprove-
mentsto a geneticallysimilar populationhasbeenlikened
to blind randomsearch[8, 20] where genetic program-
ming will “behave like a set of parallel stochastichill-
climbers”[2§. With addedelitism or over-selectionof sim-
ilar individuals, the algorithm begins to look more like a
‘hill-climbing’ method. However, it is a loose metaphor
usedhereto helpexplainwhy increasingliversitycancause
differentbehaiour on different problems. Early corver
gence,however, is the likely causeof large performance
varianceacrosgunsasit is makesthe populationmoresus-
ceptibleto local optimathatcanvary widely [20].

Geneticprogrammingwas comparedwith hill-climbing
methodsusing similar representationsnd operators[24,
23, 15, 13]. Someproblems,Artificial Ant for instance,
were often solved betterusing geneticprogramming. On
otherproblems suchasMultiplexer, hill-climbing methods
performedconsiderablybetterthan geneticprogramming.



While we usea metaphoof hill-climbing to describeatype
of genetiprogrammingsearchit is clearlynotthecasethat
standardyeneticprogrammings only hill-climbing.

Many problemandrepresentatiospecificmethodshave
beenusedto improve diversity Hammingdistancesbe-
tweenindividualswereusedo selectdiversecrossaer part-
nersin a geneticalgorithm[7]. Thedistancebetweenrees
wasusedto defineahomologousrosseerfor geneticpro-
gramming[14]. Crosswer partnerswere selectedin the
Pygmiealgorithmfrom lists basedon fitnessand size sep-
arately[29]. Edit distancesvereusedin a multi-objective
method[5], with fitnesssharing[6], andin a linearrepre-
sentatiorto first selectfor fitnessandthendiversity[1]. Fit-
nesssharingandnegative correlationlearningwerestudied
aswaysto improve diversity [19], anda selectionmethod
thatis uniform over the fitnessvalues[9] wassuggesteas
an alternatve way to presere diversity. Island models,or
demesarecommonlysuggeste@dswaysto improve diver
sity [20, 12], but aretypically usedfor easyparallelisation
of thealgorithm.

While somemethodsof diversity shov improvementof
fitness, they typically add elitism, suffer from additional
computationand addressa problem which is not clearly
definedor understood.How doesone know what type of
diversityis needecandhow muchof it is necessaryor dif-
ferentproblems?As statedby Ryan[29], “...whatis needed
is a methodwhich doesnot attemptto explicitly measure
geneticdifferencesfor this leadsto muchdifficulty when
defining exactly what constitutesdifference”. We would
add that it is also difficult to understandvhy a problem
would benefitfrom differenttypesandlevelsof diversity.

1.2 About this Paper

We addresghe loss of diversity in geneticprogramming
with a simpletechniqueto redirectselectionpressurdrom
the fit to the fit and diverse The techniquedoesnot re-
quire us to actually measurediversity, but it significantly
changegopulationsduring the evolutionary process. We
arenotinterestedn a generaimethodto improve fithnessor
diversity, but ratherto demonstrat¢hatincreasingliversity
canleadto dramaticchanges$n thesearchability of genetic
programmingPopulatiorcornvergenceandincreasedelec-
tion pressuref similarindividualscreates ‘hill-climbing’
atmospheravhich, whendisturbed canimprove or worsen
fitness,dependingon the problem. We do not proposethat
onemethod(geneticprogrammingor hill-climbing) is bet-
terthanthe other Insteadwe intendto usethe similarities
betweenmethodsto explain the effectsof changingdiver-
sity.

In this paperwe show thatincreasingthe geneticdiver-
sity of populationcanbeeffectivein avoidinglocal optima
in problemsthataredeceptve. By deceptve, we meanthe

ahundanceof dissimilar partial solutionswhich may draw

the attentionof the algorithm but not allow improvement.
However, we shaw thatin problemswherelow diversityen-
couragesodegrowth or the culling of contetual shifting
nodes,jncreasingdiversity canbe counterto improving fit-

ness.The methodwe presentlineageselection is interest-
ing in its own right. It is efficient and senesto focusthe
searchmoreevenly acrosghediversitypresentn theinitial

population,while still allowing exploitationto emegeand
ahighlevel of fitnessto beachieved.

2 Methods

We presenta methodof lineageselectionwhichis basedn
thedefinitionandtrackingof geneticlineages.

2.1 GeneticLineages

In this studywe will focuson the standardorm of genetic
programmingwith a variablelengthtree representatiomf
S-expressionsysingstandardsubtreecrosswer for recom-
bination.In crosseer, oneof thetwo choserparentssenes
asthe root parent,which providesthe root portion of the
treeandrecevvesa subtreerom the otherparent.A genetic
lineageis definedasthe connectiorfrom theroot parentto
thoseindividuals which were created via crosswer, from
that individual. McPheeand Hopper[20] shav how en-
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Figure 1: An example of three individuals undego-
ing recombination where after the secondapplicationof
crosseerall threearedescendantsom thesameindividual
andrepresenthe samegenetidineage.

tire populationgyuickly loosegenetidineagesandsoonde-
scendfrom oneindividual. This is critical becauseenetic
lineages,definedin context with crosseer, tendto share
commonroot shapesandcontentg28, 15, 26]. Thus,they
allow us to approximatethe loss of geneticdiversity and



cornvergencewithout expensie measuresWe thenimprove
diversityby slowing thelossof genetidineagesFig. 1isan
exampleof the losslineages.Threeindividuals(Iy, Iz, I3)

produceoffspring(I}, I}, I}) via crossoer. Theroot parent
is denotedwith a solid arrow. After anothergenerationthe
threenew individualsall belongto thesamegenetidineage,
I;.

2.2 Lineage Selection

Lineageselectionis implementedas an additional stepto
biasselectiortowarddifferentlineagedrom theinitial pop-
ulation. To perform selection,we place individuals into
groupsbasedon commongeneticlineages.Tournamense-
lection picks individuals by first picking a randomgenetic
lineageandthena randomindividual from within thatlin-
eage.A tournamentis held betweerntheserandomindivid-
uals. Eachgeneticlineagehasan equal changeof con-
tributing an individual to eachtournament. We introduce
no elitism, or no direct measureof size, shapecontent,or
fitness. The aim of lineageselectionis to maintaindiver
sity, wherethe populationcontainggoodindividualsthatare
not just diverse. This additionalstepto tournaments an
inexpensve operationthat can be doneat eachgeneration
by maintaininga similar tag betweerroot-parentsandchil-
dren.It is evenmoreefficientto simply keepindividualsin
groupsbasedon their geneticlineagefrom the initial gen-
eration. The following measure®f diversity characterise
populationsaccordingto geneticdifferencesandbehaiour.

2.3 Entropy and Edit Distance

The phenotypicentroyy is definedasthe distribution of the
proportion of the populationwith the samefitnessvalue
[27], (alsoinvestigatedn [2, 3]). Specifically entrofy is

definedas — >, prlogpy, wherep,, is the proportion of

the populationwith the samefitnessvalue. Higher entropy

valuesrepresentmore chaosof the system,where chaos
refersto more unique elementswith fewer copiesin the
population. An increaseof entrofy meansthe population
is eitheracquiringnew fithessvaluesor spreadingout the
memberanore uniformly over existing values. An impor-

tantside-efect of entropy is thatit alsodescribesanemer

gentchangeof the selectionpressure Higher entrogy pop-
ulationswill allow selectionto distinguishbetweenmem-
bersbetter while lower entropy populationanake selection
more randomby groupingmary differentindividualsinto

the samefitnessclasseqandis a focus of our currentre-

search).

We will usetwo measuresf distancewithin the popula-
tion. Both measuresompareevery memberin the popula-
tion to the currentmostfit member beforedividing by the
populationsize. The first edit distanceis found by bring-
ing two treesto the samestructure- filling eithertreewith

null nodes. The distancebetweentwo nodesis 1 if they
are not equaland O if they are equal. The distancebe-
tweentwo treesis the summationof the distancebetween
their nodes normalisedby dividing by the smallertree[5].
The secondedit distancedividesthe total distance(defined
above) within the samedepthby anincreasingveight. The
distancebetweertwo treesis thenthe total distancewithin
eachdepth,placingmoreweighton distanceseartheroot
of thetrees.Thesamedistancesverestudiedpreviously|[3],
thesecondvasadaptedrom a similar distancemeasurg6]
andbotharesimilarto previousonesin theliterature[22].

3 Experimental Results

To explore the effectivenessof this stratey, we examine
threedifferent problemdomainswith two experiments:a

controlexperimentwith tournamenselectionandanexper

iment which employs lineageselection. The three prob-
lems chosenfor the experimentalstudy are Artificial Ant

on the SanteFe Trail, Even-5-Rarity and symbolicregres-
sion of the Binomial-3 function. These problemsand
algorithmic parametersaare commonly usedin numerous
theoreticalstudiesof genetic programmingand diversity
[25, 15, 2, 3, 20, 13]. The Ant problemattemptsto pick

up 89 food pelletson a grid with the functions {if-food-

aheadprog2r} andthe terminals{left, right, move}. The
Parity problemattemptsto classifyall 2° combinationsof

5-bit length strings of {1,0} with the functions {and, or,

nand} and five booleanterminals. The Binomial-3 re-

gressionproblem[4] attemptsto approximatethe function

f(z) = (1 + z)? using the terminalsz, ephemerakan-
dom constantsn the rangeof [—10, 10], andthe functions
{+,—, %, p/}, wheredivision is protectedandreturns1.0

if thedenominatois extremelysmall.

Other parametersare as follows: a generationaklgo-
rithm for 101 generationsa populationsize of 500, max-
imum depthof 10, initial maximumdepthof 4 for Ramped-
Half-n-Half tree generation,internal node selection for
crosswer of 90%, andtournamentsize of 4 for selection.
Theobjective of eachproblemis theminimisationof missed
pellets(Ant), wrongly classifiedbit-strings(Parity) andthe
meansquarecerrorfrom theBinomial-3function. Onehun-
dredrunswere performedfor eachexperimentin the ECJ
[16] frameawork.

Fig. 2 shaws the behaiour of the systemfor the con-
trol andlineageexperiments.Meanrun valuesare plotted
here,but final generatiorstatisticd arealsoreportedn Ta-
ble 1. Notethatonly the Ant problemhadanimprovement
in fithesswith lineageselectionandall problemshadasig-
nificantdecreasén sizeandincreasen edit distancesising

1Significancetestingwas done using the Student$ T-testat the 95%
confidencdevel.



Tablel: Statisticsfor the populationin thefinal generatiorof runs. Significantdifferencebetweerthe controlexperiment
andthe experimentusinglineageselectionis denotedwvith a™*’ next to thelineageselectiormean.

Problem | FinalPop Fitness Nodes Phen.Entropy Edit Dist. Edit Dist. (Weighted)
control | lineage | control | lineage | control | lineage | control | lineage | control lineage
ant min | 0.000| 0.000 | 43.408 | 41.968 | 0.292 | 0.542 | 0.120 | 0.187 | 0.615 1.047
max | 37.000| 29.000 | 116.180| 88.408 | 1.169 | 1.509 | 0.353 | 0.365 | 3.572 4.394
mean | 15.060| 10.930| 79.068 | 62.370* | 0.709 | 1.127* | 0.245 | 0.275* | 1.643 2.884*
stdes | 12.362| 10.010| 14.878 | 8.672 | 0.170 | 0.235 | 0.048 | 0.036 | 0.628 0.711
parity min | 0.000| 5.000 | 68.064 | 63.136 | 0.437 | 0.643 | 0.102 | 0.259 | 0.356 2.335
max | 13.000| 11.000 | 220.268| 109.580| 0.969 | 0.940 | 0.409 | 0.471 | 3.494 5.490
mean| 6.740| 8.970* | 124.125| 82.896* | 0.749 | 0.787* | 0.221 | 0.363* | 1.042 4.507*
stdey 2.207| 1.195 | 26.762 | 9.443 | 0.092 | 0.059 | 0.066 | 0.042 | 0.516 0.580
bin3 min | 0.000| 0.007 3.000 2992 | 0.287 | 0.264 | 0.200 | 0.227 | 0.664 0.677
max | 5.480| 6.930 | 141.308| 84.372 | 2.614 | 2.662 | 0.533 | 0.711 | 2.078 5.134
mean| 0.651| 1.428* | 57.351 | 34.401* | 1.920 | 1.888 | 0.361 | 0.403* | 1.123 2.442*
stdey | 0.972| 1.875 | 24.950 | 21.659 | 0.554 | 0.819 | 0.060 | 0.104 | 0.308 1.042
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Figure2: Measuresersusgeneratiorareshovn for eachproblemandexperimenttype (controlandlineage).Notethatthe

samekey from thetop-left graphis usedfor all graphs.

lineageselection.In the controlexperiment both measures
of editdistancediversitydecrease@arlyin therunsandre-
mainedlow. Initial increasesn entrogy for the control ex-
perimentsverefollowedby eitherdecreasesr stagnation.
This signifiesthe inability to improve either the spreadof
fithessvaluesor the uniformity of their distribution. On the
otherhand lineageselectionhadsignificantlyhigherlevels

of both edit distancediversity Also, afteraninitial period
of greaterdecreasef entropy, lineageselectionincreased
entrofy longerandto highervalues.Fig. 2 alsoshaws that
lineageselectiorproducedsignificantlysmallerindividuals.
Fig. 3 shows that underlineageselection,the distance
betweersuccessie bestfit individualsin the populationis
alsohigher Note thatthe weightededit distancemeasure
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Figure3: The edit distancebetweenbestfit individuals of
successie generations.

is not normalisedby individual size. Becausdineagese-
lection producedsmallerindividuals,we divided this mea-
sureby their averagesizeto producea graphsimilar to the
non-weightedneasureput whereall the lineageselection
experimentgemainedsignificantlyhigher

The Ant problemwasthe only oneto benefitin terms
of fitnessimprovementfrom lineageselection. While the
fitnessfor Parity and Binomial-3 was statisticallyworse,a
high level of fithesswas achieved by lineageselectionin
very diversepopulations.This behaiour is reflectedin the
phenotypicentropy. Whenan early increaseof entropy is
followed by stagnationor monotonicdecreasethe exper
iment tendedto have betterfitness. The early difference
in entrogy valuesbetweerthe controlandlineageselection
experimentsappearso be somavhat correlatedto fitness
improvement3].

Fig. 4 showvs the lastgeneratiorwherefitnessimproved
plottedagainstthe bestfitnessof the run for the Ant prob-
lem. Underlineageselection,the Ant problemfinds bet-
ter fitnesson average20 generationdater thanthe control
experiment. This is a good indicator that prematurecon-
vergenceis beingavoided. The Parity problemhada sim-
ilar changeusing lineageselection,wherethe bestfitness
was found betweenl10 and 15 generationdater but with
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Figure4: Thegeneratiorin the Ant problemwherethebest
fithessof the run wasfound, plottedagainsthe bestfitness
of the run. Single standarddeviation barsare plotted for
bothmeandn all directions.

a slightly worsefitness. The Binomial-3 resultswere not
significantwith respectto fithessor the last generationof
improvements.

4 Discussion

Lineageselectionchangeshe evolutionarydynamicsof di-

versity accordingto edit distanceand phenotypicentrogy.

The measuresf diversity, whenincreasedare expectedto

decreas¢he chancehatgeneticprogrammingwill become
stuckin local optima. However, only on the Ant problem
did fitnessmprove. Lineageselectiorincreasesliversityby

reducingthe effects of selectionand recombinationwvhich

leadto the quick lossof diversity Why doesthe Ant prob-

lem benefitfrom reducedselectionpressureand addeddi-

versity, andwhy doesimproving diversityandreducingse-
lection negatively affect fithesson the Binomial-3 and Par-

ity problems?\e now look atthe metaphorof geneticpro-

grammingperformingatypeof hill-climbing searcho help

understandheresults.

4.1 GeneticProgramming asa Hill-Climber

In standardgenetic programmingalgorithms,the corver-
genceof the populationto similar programsleadsrecom-
binationto performlike blind randomsearch.It is this be-
haviour that leadsus to characterisghe searchas a type
of hill-climber. Thus,we may think of the beginning of a
geneticprogrammingrun asa short, parallelsearchperiod
until corvergenceoccurs.At thatpoint, recombinatiorcou-
pled with selectionpressurg(or elitism) and a corverged
populationbehaeslik e a hill-climber on a singleprogram.
If we considerthis asa metaphorfor standardyeneticpro-
grammingsearchthenwhatchangego thealgorithmmight
wealenor strengtherperformance?



4.2 Artificial Ant

Langdonand Poli [15] describedthe Ant problemto be
highly deceptve for geneticprogramming.This is because
of numeroussolutionswith alot of symmetryandalsobe-
causethereis no ‘guiding’ force to encouragethe ant to
travel ary particularpath. They also shaved that the Ant
problemis solved betterusing geneticprogrammingthan
similar simulatedannealingand hill-climbing techniques
(page 158 [15]). Only population based, mutation-only
searchperformedconsiderablybetter as did a variant of
strict hill-climbing which allowed smallerandlarger trees
thanlikely choserby crosswer. As populationsearchonly
usegnutation,it shouldmaintaina highamountof diversity
andbe similar to performingseveral hill-climbing searches
in parallel. This searchmethodshould deal with decep-
tion betterand not get stuckin local optimaasfrequently
which explainsbetterperformance Adding componentso
the fitnessfunction that encouragedimilar typesof solu-
tionsmadethe problemeasierfor geneticprogramming.

Lineageselectionalsoaddsa similar componenbf par
allel searchto the Ant problem. High edit distancediver-
sity is maintainedand selectionpressurds reducedcreat-
ing a parallelhill-climbing effect thatescapesocal-optima
better Whenan individual becomesstuckin local optima
becausef deceptiona diversepopulationis likely to con-
tain anotherindividual which is significantly differentand
allows the run to continue. Lineageselectionincreaseor
maintainshigher entropy longer with more fithessvalues
or more uniform distributions. In the control experiments,
entropy quickly risesandthendeclines,suggesting short
periodof explorationanda higherlik elihoodof beingstuck
in local optima. Also, notethatin Fig. 3 the weightededit
distancebetweerbestof generatiorindividualsis consider
ably higherwith lineageselectionbetweergenerationd 0-
30, the samegenerationsvherethe entropy valuesbetween
experimentdiverge. The differencebetweerthe bestindi-
vidualsin this phasds foundcloserto theroot with lineage
selection. A more explorative searchphaseappeardo be
takingplaceusinglineageselection.

Reducingdeceptiorby restrictingsolutionsto be similar
([25]) would havetheoppositeeffectwhenthehill-climbing
behaiour is alsoreducedasseennext in the Parity prob-
lem.

4.3 Parity

O'Reilly and Oppacher studied the 6 and 11 Multi-

plexer problemswith geneticprogrammingandsimilar hill-

climbingtypemethodq24, 23]. TheParity andMultiplexer
problemshave similar functions,terminalsand objecties,
thoughthey arenotidentical. Hill-climbing techniquesap-
pearedsuperiorin this type of problem.Couldgeneticpro-
grammingimprove performanceby becomingmore of a

hill-climber? We first look at a modificationto geneticpro-
grammingthat claims superiorperformanceon the Even-
5-parity problem. De Jonget al [5] useda multi-objective
methodthatkeepsonly non-dominatedndividualsaccord-
ing to anindividual's fithess,size and diversity. Diversity
is basedon an edit distancebetweentrees. Small popula-
tions are usedwhich keepall non-dominatedndividuals.
The authorsnote that diversity is requiredto prevent con-
vergenceresultingin run failurewith their “uncommonde-
greeof greedinessr elitism”. Hill-climbing appearso per

form well onthis problemasdoesa multi-objectve method
which simulateshill-climbing.
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Figure5: Thebestfitnessfoundin eachParity problemrun,
plottedagainsthe averagesizeof anindividualin thatgen-
eration.

Lineageselectionon this problem decreaseselection
pressureandpreventsthelossof diversityandcorvergence.
Lineageselectiorappearso removetheattributesof genetic
programmingvhichallow it to behaelik e a“hill-climber”.
Additionally, the sizeof individualsis significantlyreduced
underineageselectionasseenn Fig. 2 andFig. 5. Thelat-
ter graphshows the bestfithnessof eachrun plottedagainst
the averagesize of anindividual in that generation.Only
in the Parity problemwastheresucha distinctive increase
in sizeassociatedvith animprovementin fitness. We hy-
pothesisehatanadditionalfactoris responsibldor poorer
fithessunderlineageselection. By using code-grevth re-
ducingmethods] uke andPanaitshavedthatreducingthe
sizeof solutionsin Parity andMultiplexer problemg(in both
sizerestrictedandunrestrictedspaceshadtheeffect of also
worseningfitnesswhen comparedvith standarduns[18].
In bothproblemsthesolvingof all thefithesscasesequires
theuseof all theterminalvalues.For example,in the Par-
ity domain theabsencef oneof thebooleanvariablefrom
a programwould resultin only half of the testcasesrom
being potentially solved. Thereis a benefitto programs
which containseveral copiesof eachterminalto increase
thechancehatthey areusedproperly



Adding additional elitism or more computationtime
with lineage selectionshould improve the fithessresults.
Also, for problemswhereit is known that solutionswill
needparticularterminalsor functions,it would make sense
to encourageheirinclusion.

4.4 Binomial-3

Daidaet al [4] provide a thoroughinvestigationof why in-

creasinghe ephemeratonstantangemakesthe Binomial-

3 problem‘harder’. They draw attentionto the inter-play

betweencontentand context of functionsandterminalsin

the representation.Many different solutionsexist to the

Binomial-3 problemand combining parts of differentso-

lutions doesnot always make sense.A level of deception
existssimilar to the Ant problem,dueto the mary different
solutions.But, in the Ant problemthe functionsandtermi-

nalspresere semantianeaningn differentcontexts. Mov-

ing constantandarithmeticfunctionsbetweerprogramsn

regressionproblemsdoesnot ensuretheir meaningin new

contexts. A DAG representatiomf geneticprogramming
wasusedon a regressiorproblem[21] wherethe authorin-

troducedadiversitymethodthatwasalsohighly elitist. Per

formanceshavedthatbestfitnesswasachievedmuchfaster
with smallerpopulationsizesusingtheelitist diversitymea-
sure.

Regressionproblemsappearto posea two-fold prob-
lem, finding a good approximationto fit the data points
andattemptingto reducesemantichange®f nodesduring
cross@er. In this case,increasinggeneticdiversity could
increasethe chancethatcrosseer will have problemswith
nodeschangingcontet. A corverged population might
containfewer nodesbut with similar contexts and easethe
search.However, too little or too muchselectionor diver-
sity would causeproblemsaswell, makingthis a complex
problemdomain.

4.5 Remarks

Is increasingdiversity beneficialto geneticprogramming?
We have seerthatincreasinghegeneticdifferencesn pop-
ulations allows for more global searchand local optima
avoidance We have alsoseerthatit maynegatively reduce
individual size and preventthe removal of nodesthat oth-
erwisemightreducedeceptionIncreasinggeneticdiversity
addslongerperiodsof entropy increasewhich is desirable
if the objectie is a uniform spreadof solutionsinsteadof
a singlesolution. However, the slower increaseof entroyy,
the higher geneticdiversity and the survival of more dis-
similar solutionsappeargo decreasehe hill-climbing be-
haviour that previousresearchasshawn to be effectivein
solvingtheseproblems Futuremethodsusedto increaseli-
versityto improvefitnessshouldclearlystatethemotivation
for suchanincreaseandwhy thattype of diversitywould be

beneficial. Diversity methodsmay not be justified in their
own right, but asa partnerin a moreelitist stratey or asa
supplierof programsgo alocal searchmethod.

5 Conclusions

Lineageselectionis usedto increasediversity by reducing
the selectionpressurefrom the mostfit to the fit and di-
verse This hascausedperformancevarianceacrossthree
problemdomains.We analysedheseresultsin thelight of
previousresearcho concludethat, if geneticprogramming
is viewedasperformingatypeof hill-climbing searchthen
addingdiversity canworsenfithesson someproblemsthat
clearly benefitfrom elitismin a hill-climbing ervironment.
However, when deceptionis embeddednto the problem,
improving diversity may help avoid local optima (asin the
Ant problem),or it may compoundhe deceptiorby main-
tainingits presencgasin the Binomial-3problem).

Our future work is investigatingmethodswhich allow
theappropriateype andamountof diversityto beanemetr
gentpropertyof the system. Detectingdeception.contex-
tual shiftsandthe changingdistribution of populationcon-
tentandbehaioursarepromisingareasof futureresearch.
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